Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-05T04:29:26.140Z Has data issue: false hasContentIssue false

Pressure dependence of a pure krypton mono-filamentary dielectric barrier discharge

Published online by Cambridge University Press:  26 November 2009

N. Merbahi*
Affiliation:
Université de Toulouse, LAPLACE UMR CNRS 5213, UPS, 118 Route de Narbonne, 31062 Toulouse, France
N. Sewraj
Affiliation:
Université de Toulouse, LAPLACE UMR CNRS 5213, UPS, 118 Route de Narbonne, 31062 Toulouse, France
F. Marchal
Affiliation:
Université de Toulouse, LAPLACE UMR CNRS 5213, UPS, 118 Route de Narbonne, 31062 Toulouse, France
J.-P. Gardou
Affiliation:
Université de Toulouse, LAPLACE UMR CNRS 5213, UPS, 118 Route de Narbonne, 31062 Toulouse, France
Get access

Abstract

Stable mono-filamentary dielectric barrier discharges (MF-DBDs) are achieved between two insulated electrodes in pure krypton, between 100 and 600Torr. Electrical characterization, spectroscopic and kinetic analyses of the MF-DBD are performed. The fast supply current pulse provides reliable triggering for spectroscopic measurements thus allowing an in situ kinetic study. Only the second continuum of krypton is observed and it is attributed to krypton excimers Kr2[ 1u(3P2)] lowv which are correlated to the Kr(3P2) metastable atomic state. Its intensity increases with pressure, due to an enhancement of 3-body collisions with ground state atoms. The kinetic analysis of the luminescence decay of this emission in the post excitation phase, leads to only two exponential components. The pressure dependence of each decay frequency allowed determination of the radiative lifetime of Kr2[ 1u(3P2)] low v excimers and the 3-body collisional rate constant of formation of Kr2[ 1u(3P2)] high v ones are determined.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kogelschatz, U., Eliasson, B., Egli, W., J. Phys. IV 7, C4-47 (1997)
F. Vollkommer, L. Hitzschke, Proc. of the 8th Int. Symp. Light Sources-8, Griefswald, 1998, pp. 51–60
Merbahi, N., Ledru, G., Sewraj, N., Marchal, F., J. Appl. Phys. 101, 123309 (2007) CrossRef
Merbahi, N., Sewraj, N., Marchal, F., Salamero, Y., Millet, P., J. Phys. D 37, 16764 (2004) CrossRef
Feng, X., Zhu, S., Phys. Scr. 74, 322 (2006) CrossRef
Radu, I., Bartnikas, R., Czeremuszkin, G., Wertheimer, M.R., IEEE Trans. Plasma Sci. 31, 411 (2003) CrossRef
Marchal, F., Merbahi, N., Ledru, G., Gardou, J.P., Sewraj, N., J. Phys. B 42, 15201 (2008) CrossRef
G. Jabbour, P. Rodriguez Akerreta, F. Marchal, N. Sewraj, G. Ledru, 17th Gas Discharge Int. Conf., Cardiff, 2008, pp. 549–552
Liu, S., Neiger, M., J. Phys. D 34, 1632 (2001) CrossRef
P. Rodriguez Akerreta, N. Merbahi, N. Sewraj, F. Marchal, G. Ledru, A. Ramasamy, J.P. Gardou, 17th Gas Discharge Int. Conf., Cardiff, 2008, pp. 277–280