Skip to main content Accessibility help

Preparation and study of the structural and electronic properties of the type-I clathrate phase Ba8Ga16MgxGe30-x

  • De-Cong Li (a1), Shu-Kang Deng (a2), Hai-Rong Wang (a1), Yi-Fen Zhao (a2), Xing-Fa Zi (a2), Yi Tu (a2), Liang Fang (a3) and Wen-Hou Wei (a3)...


Polycrystalline Ba8Ga16MgxGe30−x compounds were synthesized by combining solid-state reaction with spark plasma sintering (SPS) method. The structural and electronic properties of Mg-substituted Ge type-I clathrate phase Ba8Ga16MgxGe30−x (x = 1, 2, 3, 4) were investigated experimentally and theoretically. Theoretically structural and electronic properties of Ba8Ga16MgxGe30−x were calculated by first-principles method based on the density-functional theory. The results indicate a strong preference for the occupation of the 6c sites by Mg. It is found that Mg substitution for Ge can lower the melting points and bulk modulus of this system. The formation energies and the binding energies decrease with increasing Mg content, suggesting that the Mg-doped Ba8Ga16Ge30 clathrates are stable in a limited range of composition. The calculated results show that these alloys are all indirect gap semiconductors and the values of band gap increase with the increase of Mg content. All specimens exhibit the behavior of the p-type conduction, which is originated from the presence of a shallow acceptor energy level. The electrical conductivity and the room-temperature carrier mobility decrease with increasing Mg content, while the room-temperature carrier concentration increases with increasing Mg content.


Corresponding author


Hide All
[1]Altenkirch, E., Physikalische Zeitschrift 10, 560 (1909)
[2]Nolas, G.S., Sharp, J., Goldsmid, H.J., Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001)
[3]Eisenmann, B., Schäfer, H., Zagler, R., J. Less-Common Met. 118, 43 (1986)
[4]Slack, G.A., CRC Handbook of Thermoelectrics (CRC, Boca Raton, FL, 1995), Chap. 34, p. 407
[5]Snyder, G.J., Christensen, M., Nishibori, E., Caillat, T., Iversen, B.B., Nat. Mater. 3, 458 (2004)
[6]Koza, M.M., Johnson, M.J., Viennoits, R., Mutka, H., Girard, L., Ravot, D., Nat. Mater. 7, 805 (2008)
[7]Liang, Y., Böhme, B., Ormeci, A., Borrmann, H., Pecher, O., Haarmann, F., Schnelle, W., Baitinger, M., Grin, Y., Chem. Eur. J. 18, 9818 (2012)
[8]Svilen, B., Sevov, C., J. Am. Chem. Soc. 123, 3389 (2001)
[9]Avila, M.A., Suekuni, K., Umeo, K., Takabatake, T., Physica B 383, 124 (2006)
[10]Li, Y., Gao, J., Chen, N., Liu, Y., Luo, Z.P., Zhang, R.H., Ma, X.Q., Cao, G.H., Physica B 403, 1140 (2008)
[11]Kuznetsov, V.L., Kuznetsova, L.A., Kaliazin, A.E., Rowe, D.M., J. Appl. Phys. 87, 7871 (2000)
[12]Nolas, G.S., Cohn, J.L., Slack, G.A., Schujman, S.B., Appl. Phys. Lett. 73, 178 (1998)
[13]Avila, M.A., Suekuni, K., Umeo, K., Fukuoka, H., Yamanaka, S., Takabatake, T., Appl. Phys. Lett. 92, 041901 (2008)
[14]Martin, J., Nolasa, G.S., Wang, H., J. Appl. Phys. 102, 103719 (2007)
[15]Kozina, M., Bridges, F., Jiang, Y., Avila, M.A., Suekuni, K., Taka, T., Phys. Rev. B 80, 212101 (2009)
[16]Saramat, A., Svensson, G., Palmqvist, A.E.C., Stiewe, C., Mueller, E., Platzek, D., Williams, S.G.K., Rowe, D.M., Bryan, J.D., Stucky, G.D., J. Appl. Phys. 99, 023708 (2006)
[17]May, A.F., Toberer, E.S., Saramat, A., Snyder, G.J., Phys. Rev. B 80, 125205 (2009)
[18]Tang, X.F., Li, P., Deng, S.K, Zhang, Q.J., J. Appl. Phys. 104, 013706 (2008)
[19]Cohn, J.L., Nolas, G.S., Fessatidis, V., Metcalf, T.H., Slack, G.A., Phys. Rev. Lett. 82, 779 (1999)
[20]Slack, G.A., in Solid State Physics, 34, edited by Ehrenreich, H., Seitz, F., Turnbull, D. (Academic Press, New York, 1979), pp. 171
[21]Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J., Science 321, 554 (2008)
[22]Deng, S.K., Saiga, Y., Kajisa, K., Takabatake, T., J. Appl. Phys. 109, 103704 (2011)
[23]Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D., Rev. Mod. Phys. 64, 1045 (1992)
[24]Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)
[25]Okamoto, N.L., Kishida, K., Tanaka, K., Inui, H., J. Appl. Phys. 100, 073504 (2006)
[26]Blake, N.P., Bryan, D., Latturner, S., Møllnitz, L., Stucky, G.D., Metiu, H., J. Chem. Phys. 114, 10063 (2001)
[27]Larson, A.C., Von Dreele, R.B., General Structure Analysis System (GSAS), Los Alamos National Laboratory, Report LAUR 86-748, 2000
[28]Bentien, A., Palmqvist, A., Bryan, J.D., Latturner, S., Stucky, G.D., Furenlid, L., Iversen, B.B., Angew. Chem. Int. Ed. Engl. 39, 3613 (2000)
[29]Latturner, S.E., Ph.D. thesis, University of California, 2000
[30]Nenghabi, E.N., Myles, C.W., Phys. Rev. B 77, 205203 (2008)
[31]Dong, J., Sankey, O.F., Ramachandran, G.K., Mcmillan, P.F., J. Appl. Phys. 87, 7726 (2000)
[32]Leoni, S., Cabrera, W.C., Grin, Y., J. Alloys Compd. 350, 113 (2003)
[33]Moriguchi, K., Munetoh, S., Shintani, A., Motooka, T., Phys. Rev. B 64, 195409 (2001)
[34]Zhu, X.H., Chen, N., Liu, L.H., Li, Y., J. Appl. Phys. 111, 07E305 (2012)
[35]Miguel, A.S., Melinon, P., Connetable, D., Blase, X., Tournus, F., Reny, E., Yamanaka, S., Itie, J.P., Phys. Rev. B 65, 054109 (2002)
[36]Loveday, J.S., Nelms, R.J., Guthrie, M., Belmonte, S.A., Allan, D.R., Klug, D.D., Tse, J.S., Handa, Y.P., Nature 410, 661 (2001)
[37]Rutter, M.D., Uchida, T., Secco, R.A., Huang, Y., Wang, Y., J. Phys. Chem. Solids 62, 599 (2001)
[38]Moriguchi, K., Munetoh, S., Shintani, A., Phys. Rev. B 62, 7138 (2000)
[39]Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C., Phys. Rev. B 46, 6671 (1992)
[40]Speich, G.R., Schwoeble, A.J., Leslie, W.C., Metall. Trans. 3, 2031 (1972)
[41]Cohen, M.L., Phys. Rev. B 32, 7988 (1985)
[42]Haines, J., J.M. Lèger, Annu. Rev. Mater. Res. 311, 1 (2001)
[43]Blase, X., Gillet, P., Miguel, A.S., Melinon, P., Phys. Rev. Lett. 92, 215505 (2004)
[44]Brazhkin, V.V., Lyapin, A.G., Popova, S.V., J. Appl. Phys. 84, 219 (1998)
[45]Watkins, G.D., in Deep Centers in Semiconductors, edited by Pantelides, T. (Gordon and Breach, New York, 1986), p. 147
[46]Watkins, G.D., Rong, F., Barry, W.A., Donegan, J.F., Mat. Res. Soc. 104, 3 (1988)
[47]Blake, N.P., Latturner, S., Bryan, J.D., Stucky, G.D., Metiu, H., J. Chem. Phys. 115, 8060 (2001)
[48]San-Miguel, A., Kéghélian, P., Blase, X., Mélinon, P., Perez, A., Itié, J.P., Polian, A., Cohen, M.L., Phys. Rev. B 32, 7988 (1985)
[49]Dong, J.J., Sankey, O.F., J. Phys. Condens. Matter 11, 6129 (1999)
[50]Connétable, D., Timoshevskii, V., Artacho, E., Blase, X., Phys. Rev. Lett. 87, 206405 (2001)
[51]Altenkirch, E., Physikalische Zeitschrift 12, 920(1911)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed