Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T02:50:22.528Z Has data issue: false hasContentIssue false

Post-annealing treatment for Cu-TiO2 nanotubes and their use in photocatalytic methyl orange degradation and Pb(II) heavy metal ions removal

Published online by Cambridge University Press:  11 July 2014

Srimala Sreekantan*
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
Syazwani Mohd Zaki
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
Chin Wei Lai
Affiliation:
Nanotechnology & Catalysis Research Centre (NANOCAT), 3rd Floor, Block A, Institute of Postgraduate Studies (IPS), University of Malaya, 50603 Kuala Lumpur, Malaysia
Teoh Wah Tzu
Affiliation:
Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2118, Japan
*
Get access

Abstract

TiO2 nanotubes were synthesized via electrochemical anodization of Ti foil at 60 V for 1 h in a bath with electrolytes composed of ethylene glycol containing 5 wt.% of NH4F and 1 vol.% of H2O2. The incorporation of optimum Cu2+ ions (1.30 at.%) into TiO2 nanotubes were prepared by using wet impregnation method to improve their photocatalytic methyl orange degradation and Pb(II) heavy metal removal. The small Cu2+ ions were successfully diffused into lattice of TiO2 nanotubes by conducting post-annealing treatment at 400 °C for 4 h in argon atmosphere after wet impregnation. In this manner, optimum Cu2+ ions played a crucial role in suppressing the recombination of charge carriers by forming inter-band states (mismatch of the band energies) within the lattice of Cu-TiO2. The experimental results showed that a maximum of 80% methyl orange removal and 97.3% Pb(II) heavy metal removal at pH 11 under UV irradiation for 5 h. Besides, it was noticed that photocatalytic Pb(II) heavy metal removal was strong dependence on pH of the solution because of the amphoteric character of Cu-TiO2 in an aqueous medium.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ibitz, A., Austrian J. Southeast Asian Stud. 5, 30 (2012)
Sthiannopkao, S., Wong, M.H., Sci. Total Environ. 463, 1147 (2013)CrossRef
Goosey, M., Circuit World 30, 41 (2004)CrossRef
Murruni, L., Conde, F., Leyva, G., Litter, M.I., Appl. Catal. B: Env. 84, 563 (2008)CrossRef
ICF, Electronics Waste Management in the United States through 2009 (US Environmental Protection Agency, 2011)
Xu, D., Tan, X., Chen, C., Wang, X., J. Hazard. Mater. 154, 407(2008)CrossRef
Park, H., Park, Y., Kim, W., Choi, W., Photochem, J., Photobiol, C, Photochem. Rev. 15, 1 (2013)CrossRef
Zhang, D., Transit. Met. Chem. 35, 933 (2010)CrossRef
Barakat, M., Arabian J. Chem. 4, 361 (2011)CrossRef
Kabra, K., Chaudhary, R., Sawhney, R.L., Ind. Eng. Chem. Res. 43, 7683 (2004)CrossRef
Chen, D., Ray, A.K, Chem. Eng. Sci. 56, 1561 (2001)CrossRef
Murruni, L., Leyva, G., Litter, M.I., Catal. Today 129, 127 (2007)CrossRef
Samarghandi, M., Nouri, J., Mesdaghinia, A., Mahvi, A., Nasseri, S., Vaezi, F., Int. J. Environ. Sci. Technol. 4, 19 (2007)CrossRef
Joshi, K., Shrivastava, V., J. Appl. Sci. Res. 1, 1 (2010)
Mishra, T., Hait, J., Aman, N., Jana, R.K., Chakravarty, S., J. Colloid Interface Sci. 316, 80 (2007)CrossRef
Xiao, P., Liu, D., Garcia, B., Sepehri, S., Zhang, Y., Cao, G., Sens. Actuators B: Chem. 134, 367 (2008)CrossRef
Lai, C.W., Sreekantan, S., Micro & Nano Lett. 7, 443 (2012)CrossRef
Grimes, C.A., J. Mater. Chem. 17, 1451 (2007)CrossRef
Lai, C.W., Sreekantan, S., Pei San, E., Krengvirat, W., Electrochim. Acta 77, 128 (2012)CrossRef
Su, Z., Zhou, W., J. Mater. Chem. 21, 8955 (2011)CrossRef
Lai, C.W., Sreekantan, S., J. Alloys Compd. 547, 43 (2013)CrossRef
Sun, L.D., Zhang, S., Sun, X.W., He, X.D., J. Nanosci. Nanotechnol. 10, 4551 (2010)CrossRef
Lai, C.W., Sreekantan, S., Int. J. Hydrogen Energy 38, 2156 (2013)CrossRef
Lai, C.W., Sreekantan, S., Electrochim. Acta 87, 294 (2013)CrossRef
Nah, Y.C., Paramasivam, I., Schmuki, P., ChemPhysChem 11, 2698 (2010)CrossRef
Sun, J., Chen, G., Li, Y., Zhou, C., Zhang, H., J. Alloys Compd. 509, 1133 (2011)CrossRef
Li, Z., Liu, J., Wang, D., Gao, Y., Shen, J., Int. J. Hydrogen Energy 37, 6431 (2012)CrossRef
Zhao, P.J., Wu, R., Hou, J., Chang, A.M., Guan, F., Zhang, B., Acta Phys. Chim. Sin. 28, 1971 (2012)
Guo, M., Du, J., Physica B: Condens. Matter 407, 1003 (2012)CrossRef
Li, H., Duan, X., Liu, G., Li, L., Mater. Res. Bull. 43, 1971 (2008)CrossRef
Mor, G.K., Varghese, O.K., Wilke, R.H.T., Sharma, S., Shankar, K., Latempa, T.J., Choi, K.S., Grimes, C.A., Nano Lett. 8, 1906 (2008)CrossRef
Sreekantan, S., Wei, L.C., Lockman, Z., J. Electrochem. Soc. 158, C397 (2011)CrossRef
Lai, C.W., Sreekantan, S., J. Nanomater. 2011, 142463 (2011)CrossRef
Lai, C.W., Sreekantan, S., Nano 7, 1250051 (2012)CrossRef
Lai, C.W., Sreekantan, S., Euro. Phys. J. Appl. Phys. 59, 20403 (2012)CrossRef
Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A., Sol. Energy Mater. Sol. Cells 90, 2011 (2006)CrossRef
Regonini, D., Jaroenworaluck, A., Stevens, R., Bowen, C.R., Surf. Interface Anal. 42, 139 (2010)CrossRef
Fujishima, A., Zhang, X.T., Tryk, D.A., Surf. Sci. Rep. 63, 515 (2008)CrossRef
Bavykin, D., Milsom, E., Marken, F., Kim, D., Marsh, D., Riley, D., Walsh, F., El-Abiary, K., Lapkin, A., Electrochem. Commun. 7, 1050 (2005)CrossRef