Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-26T08:15:10.367Z Has data issue: false hasContentIssue false

Optimization of a probe for the spectroscopic electrical characterization of biological tissues

Published online by Cambridge University Press:  10 May 2007

L. Bernard*
Affiliation:
Ampère, CNRS, UMR 5005, École Centrale de Lyon, 69134 Ecully, France
N. Burais
Affiliation:
Ampère, CNRS, UMR 5005, Université Lyon 1, 69622 Villeurbanne, France
L. Nicolas
Affiliation:
Ampère, CNRS, UMR 5005, École Centrale de Lyon, 69134 Ecully, France
J. A. Vasconcelos
Affiliation:
Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
Get access

Abstract

The spectroscopic electrical characterization of biological tissues between 10 Hz and 10 MHz is generally based on four-electrode impedance measurement. An array of four aligned needle-electrodes is commonly used for the probe. The electrode/sample interface impedances and the parasitic capacitances of the system induce measurement inaccuracies respectively in the low and high parts of the studied frequency range. These inaccuracies cannot be removed by any usual calibration method but can be minimized by modifying the geometry of the probe. Using a 3D finite element model of the probe coupled with a deterministic optimization algorithm, it is shown that the configuration of the electrodes should be different at 10 Hz and 10 MHz to improve the performances of the measurement system.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Osterman, K.S. et al., Phys. Med. Biol. 49, 665 (2004) CrossRef
Siauve, N. et al., COMPEL (International Journal for Computation) 22, 457 (2003) CrossRef
Siauve, N. et al., Eur. Phys. J. Appl. Phys. 21, 243 (2003) CrossRef
Gabriel, S. et al., Phys. Med. Biol. 41, 2251 (1996) CrossRef
Jastrzebska, M. et al., Eur. Phys. J. E 14, 137 (2004) CrossRef
Clerc, M. et al., ESAIM Proc. 14, 63 (2005) CrossRef
S. Grimnes et al., Bioimpedance and bioelectricity basics (Academic Press, 2000), p. 11
Bordi, F. et al., Bioelectrochemistry 54, 53 (2001) CrossRef
Tsai, J.Z. et al., IEEE Tr. Biomed. Eng. 47, 41 (2000) CrossRef
Paulson, K.S. et al., IEEE Tr. Biomed. Eng. 51, 1838 (2004) CrossRef
Dular, P. et al., IEEE Tr. Mag. 34, 3395 (1998) CrossRef
L. Bernard et al., Revue Internationale de Génie Électrique (RIGE) (to be published)
P. Steendijk et al., IEEE Tr. Biomed. Eng. 40 (1993)
Stevan, K. et al., IEEE Tr. Biomed. Eng. 47, 163 (2000)
Wang, Y. et al., IEEE Tr. Biomed. Eng. 45, 877 (1998) CrossRef
D. Schuhmann, Propriétés électriques des interfaces chargées (Masson, 1978), p. 165
Wtorek, J. et al., IEEE Tr. Biomed. Eng. 49, 240 (2002) CrossRef
Mirtaheri, P. et al., IEEE Tr. Biomed. Eng. 52, 2093 (2005) CrossRef
Bao, J.Z. et al., IEEE Tr. Biomed. Eng. 40, 364 (1993) CrossRef
G.N. Vanderplaats, Numerical Optimisation Technique for Engineering Design: With Applications (McGraw-Hill Book Company, 1984)
Pop, M. et al., Phys. Med. Biol. 48, 2509 (2003) CrossRef
Jaspard, F. et al., Physiol. Meas. 23, 547 (2002) CrossRef
Jaspard, F. et al., Physiol. Meas. 24, 137 (2003) CrossRef
Peyman, A. et al., Phys. Med. Biol. 46, 1617 (2001) CrossRef