Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-20T22:53:44.274Z Has data issue: false hasContentIssue false

Operating mechanism of the organic metal-semiconductor field-effect transistor (OMESFET)

Published online by Cambridge University Press:  23 November 2011

C.H. Kim*
Affiliation:
LPICM, École polytechnique, CNRS, 91128 Palaiseau, France
D. Tondelier
Affiliation:
LPICM, École polytechnique, CNRS, 91128 Palaiseau, France
B. Geffroy
Affiliation:
LPICM, École polytechnique, CNRS, 91128 Palaiseau, France CEA Saclay, DSM/IRAMIS/SPCSI/LCSI, 91191 Gif-sur-Yvette, France
Y. Bonnassieux
Affiliation:
LPICM, École polytechnique, CNRS, 91128 Palaiseau, France
G. Horowitz
Affiliation:
LPICM, École polytechnique, CNRS, 91128 Palaiseau, France
Get access

Abstract

Organic metal-semiconductor field-effect transistors (OMESFETs) were fabricated with a polycrystalline organic semiconductor (pentacene) and characterized in order to systematically analyze their operation mechanism. Impedance measurements confirmed full depletion of the thick pentacene film (1 μm) due to the low doping concentration of unintentional doping (typically less than 1014 cm−3). The necessity of developing a specific device model for OMESFET is emphasized as the classical (inorganic) MESFET theory based on the depletion modulation is not applicable to a fully-depleted organic semiconductor. By means of joint electrical measurements and numerical simulation, it is pointed out that the gate voltage controls the bulk distribution of injected carriers, so that the competition between the gate and drain currents is critical for determining the operation mode. Finally, the geometrical effect is investigated with comparing a number of transistors with various channel widths and lengths.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, S., Deng, L., Xie, J., Peng, L., Xie, L., Fan, Q., Huang, W., Adv. Mater. 22, 5227 (2010)CrossRef
Braga, D., Horowitz, G., Adv. Mater. 21, 1473 (2009)CrossRef
Dennler, G., Scharber, M.C., Brabec, C.J., Adv. Mater. 21, 1323 (2009)CrossRef
Sze, S.M., Ng, K.K., Physics of Semiconductor Devices, 3rd edn. (Wiley-Interscience, New York, 2007)Google Scholar
Braga, D., Campione, M., Borghesi, A., Horowitz, G., Adv. Mater. 22, 424 (2010)CrossRef
Brütting, W., Berleb, S., Mückl, A.G., Org. Electron. 2, 1 (2001)CrossRef
Takshi, A., Dimopoulos, A., Madden, J.D., Appl. Phys. Lett. 91, 083513 (2007)CrossRef
Takshi, A., Dimopoulos, A., Madden, J.D., IEEE Trans. Electron Devices 5, 276 (2008)CrossRef
Kao, K.C., Hwang, W., Electrical Transport in Solids with Particular Reference to Organic Semiconductors (Pergamon Press, London, 1981)Google Scholar
Mark, P., Helfrich, W., J. Appl. Phys. 33, 205 (1962)CrossRef
Stallinga, P., Gomes, H.L., Murgia, M., Müllen, K., Org. Electron. 3, 43 (2002)CrossRef
Lous, E.J., Blom, P.W.M., Molenkamp, L.W., de Leeuw, D.M., Phys. Rev. B 51, 17251 (1995)CrossRef
Kaji, T., Takenobu, T., Morpurgo, A.F., Iwasa, Y., Adv. Mater. 21, 3689 (2009)CrossRef
Lee, Y.S., Park, J.H., Choi, J.S., Opt. Mater. 21, 433 (2002)CrossRef
Alexander, C.K., Sadiku, M.N.O., Fundamentals of Electric Circuits, 2nd edn. (McGraw-Hill, New York, 2004)Google Scholar
Jurchescu, O.D., Baas, J., Palstra, T.T.M., Appl. Phys. Lett. 87, 052102 (2005)CrossRef