Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-06T04:40:31.326Z Has data issue: false hasContentIssue false

Numerical study of the influence of flux creep and of thermal effect on dynamic behaviour of magnetic levitation systems with a high-Tcsuperconductor using control volume method

Published online by Cambridge University Press:  31 January 2009

L. Alloui*
Affiliation:
Laboratoire de Génie Électrique de Paris – LGEP, CNRS UMR 8507, Supélec, Université Pierre et Marie Curie, Paris 6 Université Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex, France
F. Bouillault
Affiliation:
Laboratoire de Génie Électrique de Paris – LGEP, CNRS UMR 8507, Supélec, Université Pierre et Marie Curie, Paris 6 Université Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex, France
S. M. Mimoune
Affiliation:
Laboratoire de Modélisation des Systèmes Énergétiques – LMSE Département d'Électrotechnique, Université Mohamed Kheider, 07000 Biskra, Algeria
Get access

Abstract

This paper displays some simulation results of dynamic responses of the high-Tc superconductors (HTSC)-Permanent magnet (PM) levitation systems taking into account the influence of the flux creep phenomena and of the thermal effect. We focus on the establishment of a three-dimensional numerical code to solve the nonlinear and coupled equations. A new control volume method is proposed for the resolution of the partial derivative equations of the treaded physical phenomena. The influence is comprehensively displayed by comparing the predictions of dynamic responses of such systems in which the thermal effect in the superconductor is and is not taken into account. The electromagnetic and thermal coupling is ensured by an alternate algorithm. The thermal effect highlights the influence of the temperature on the value of the magnetic levitation force, levitation stabilization time and shows that the vibration center of levitated body had drifted downward.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Masaie, I., Demachi, K., Ichihara, T., Usaka, M., IEEE Trans. Appl. Supercond. 15, 2257 (2005) CrossRef
Hull, J., Supercond. Sci. Technol. 13, R1 (2000) CrossRef
Wang, J. et al., Physica C 378–381, 809 (2002) CrossRef
Ren, Z., Wang, J., Wang, S., Jiang, H., Zhu, M., Wang, X., Shen, X., Physica C 378–381, 873 (2002) CrossRef
Yoshida, Y., Uesaka, M., Miya, K., IEEE Trans. Magn. 30, 3503 (1994) CrossRef
Anderson, P.W., Phys. Rev. Lett. 9, 309 (1962) CrossRef
Rhyner, J., Physica C 212, 292 (1993) CrossRef
Jiang, H., Wang, J., Wang, S., Ren, Z., Zhu, M., Wang, X., Shen, X., Physica C 378–381, 869 (2002) CrossRef
Kasal, R.B., de Andrade Jr, R., Sotelo, G.G., Ferreira, A.C., IEEE Trans. Appl. Supercond. 17, 2158 (2007) CrossRef
Suzuki, T., Ito, E., Sakai, T., Koga, S., Murakami, M., Nagashima, K., Miyazaki, Y., Seino, H., Sakai, N., Hirabayashi, I., Sawa, K., IEEE Trans. Appl. Supercond. 17, 3020 (2007) CrossRef
Brandt, E.H., Phys. Rev. B 58, 6506 (1998) CrossRef
Sugiura, T., Hashizume, H., Miya, K., Int. J. Appl. Electromagn. Mat. 2, 183 (1991)
K. Berger, Thèse Université Henri Poincaré, Nancy I, France, 2006
Fou, S.H.T., Erraud, A., Bouillault, F., IEEE Trans. Magn. 36, 1197 (2000)
Coulomb, J.L., IEEE Trans. Magn. 17, 3241 (1981) CrossRef
Biro, O., Preis, K., IEEE Trans. Magn. 25, 3145 (1989) CrossRef
Fischer, H.E., Watson, S.K., Cahill, D.G., Comments Cond. Matt. Phys. 14, 65 (1988)
Lkebe, M. et al., Jpn J. Appl. Phys. 33, 4965 (1994)
Braeck, S., Shantsev, D.V., Johansen, T., Galperin, Y.M., J. Appl. Phys. 92, 6235 (2002) CrossRef
M. Murakami, Melt processed high-temperature superconductors (World Scientific Publ. Co., 1992)