Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T01:09:21.262Z Has data issue: false hasContentIssue false

Numerical damage models using a structural approach: application in bones and ligaments

Published online by Cambridge University Press:  15 January 2002

P. J. Arnoux
Affiliation:
Laboratoire de Mécanique et d'Acoustique, CNRS, équipe MMCB, 31 chemin J. Aiguier, 13402 Marseille, France Laboratoire de Biomécanique Appliquée, INRETS, Faculté de Médecine, boulevard P. Dramard, 13916 Marseille, France
J. Bonnoit
Affiliation:
Laboratoire de Biomécanique Appliquée, INRETS, Faculté de Médecine, boulevard P. Dramard, 13916 Marseille, France
P. Chabrand
Affiliation:
Laboratoire de Mécanique et d'Acoustique, CNRS, équipe MMCB, 31 chemin J. Aiguier, 13402 Marseille, France
M. Jean
Affiliation:
Laboratoire de Mécanique et d'Acoustique, CNRS, équipe MMCB, 31 chemin J. Aiguier, 13402 Marseille, France
M. Pithioux*
Affiliation:
Laboratoire de Mécanique et d'Acoustique, CNRS, équipe MMCB, 31 chemin J. Aiguier, 13402 Marseille, France
Get access

Abstract

The purpose of the present study was to apply knowledge of structural properties to perform numerical simulations with models of bones and knee ligaments exposed to dynamic tensile loading leading to tissue damage. Compact bones and knee ligaments exhibit the same geometrical pattern in their different levels of structural hierarchy from the tropocollagen molecule to the fibre. Nevertheless, their mechanical behaviours differ considerably at the fibril level. These differences are due to the contribution of the joints in the microfibril-fibril-fibre assembly and to the mechanical properties of the structural components. Two finite element models of the fibrous bone and ligament structure were used to describe damage in terms of elastoplastic laws or joint decohesion processes.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Jean, Frictional contact in rigid or deformable bodies: numerical simulation of geomaterials, edited by A.P.S. Salvaduai, J.M. Boulon (Elsevier Science Publisher, Amsterdam), pp. 463-486.
Jean, M., Comput. Methods Appl. Mech. Eng. 177, 235 (1999). CrossRef
Crolet, J.M., Aoubiza, B., Meunier, A., J. Biomech. 26, 677 (1993). CrossRef
Bingham, D.N., DeHoff, P.H., J. Biomech. Eng. 101, 15 (1979). CrossRef
Carter, D.R., Caler, W.E., J. Orthopead. Res. 3, 84 (1985). CrossRef
Bonfield, W., Li, C.H., J. Appl. Phys. 37, 869 (1966). CrossRef
Cooke, F.W., Zeidman, H., Scheifele, S.J., J. Biomed. Mater. Res. Symp. 4, 383 (1973). CrossRef
A. Viidik, Functional properties of collagenous tissues. International Review of Connective Tissue Research, VI (Academic press, New York, 1973).
A. Viidik, Mechanical properties of parallel-fibred collagenous tissues, Biology of collagen (London: Academic press, 1980), pp. 237-255.
J.C. Barbenel, J.H. Evans, J.B. Finlay, Stress-strain time relation for soft connective tissues. Perspectives in Biomedical Engineering, edited by R.M. Kenedi (London Macmillan, 1973).
Sanjeevi, R., Somanathan, N., Ramaswamy, D., J. Biomech. 15, 181 (1982). CrossRef
Y.C. Fung, Biomechanics. Mechanical properties of living tissues (Springer-Verlag, 1993).
Piekarski, K., J. Appl. Phys. 41, 215 (1970). CrossRef
Piekarski, K., Int. J. Eng. Sci. 11, 557 (1973). CrossRef
Decreamer, W., Maes, M., Vanhuyse, V., Vanpeper-Strate, P., J. Biomech. 13, 550 (1980).
Sasaki, N., Odajima, S., J. Biomech. 29, 655 (1996). CrossRef
Sasaki, N., Odajima, S., J. Biomech. 29, 1131 (1996). CrossRef
Kwan, M., Woo, S., J. Biomech. Eng. 111, 361 (1989). CrossRef
Evans, F.G., Bang, S., Am. J. Anat. 120, 79 (1967). CrossRef
Kastelic, J., Galeski, A., Bear, E., Connect. Tissue Res. 6, 11 (1978). CrossRef
Weiner, S., Traub, W., The Federation of American Societies for Experimental Biology Journal 6, 879 (1992).
E. Bonucci, P.M. Motta, Collagen mineralization: Aspects of structural relationship between collagen and the apatic crystallites, in Ultrastructure of Skeletal Tissues (Kluwer Academic Publisher, 1990), pp. 41-62.
Mosler, E., Folkhard, W., Knorzer, E., J. Mol. Biol. 182, 589 (1985). CrossRef
Folkhard, W., Mosler, E., Geercken, W., Knorzer, E., Nemetscheck-Gansler, H., Nemetscheck, Th., Koch, H.J., Int. J. Biol. Macromol. 9, 169 (1987). CrossRef
Comminou, M., Yannas, I., J. Biomech. 9, 427 (1976). CrossRef
Maes, M., Vanhuyse, V., Decraemer, W., Raman, E., J. Biomech. 22, 1203 (1989). CrossRef
Gottesman, T., Hashin, Z., J. Biomech. 13, 89 (1980). CrossRef
A. Hodge, J. Petruska, Electron microscopy (Academic Press, New York, 1962).
Katz, J.L., Ukraincik, K., J. Biomech. 4, 221 (1971). CrossRef
J.L. Katz, The structure and biomechanics of bone. Mechanical Properties of Biological Materials' (Cambridge University Press, Cambridge, 1979), Vol. 34, pp. 137-168.
Lanir, Y., J. Biomech. 16, 1 (1983). CrossRef
Humphrey, J., Yin, F., J. Biophys. 52, 563 (1987). CrossRef
Currey, J.D., Clin. Orthopead. Related Res. J. 73, 210 (1970).
Gilmore, R.S., Katz, J.L., J. Mater. Sci. 17, 1131 (1982). CrossRef
Ascenzi, A., Bonucci, E., Anat. Record J. 158, 375 (1967). CrossRef
Reilly, D.T., Burstein, A.H., J. Biomech. 8, 393 (1975). CrossRef
M. Pithioux, Lois de comportement et modèles de rupture des os longs, University Aix Marseille II, thesis 2000.
Liao, H., Belkoff, S.A., J. Biomech. 32, 183 (1999). CrossRef
Hurschler, C., Loitz-Ramage, B., Vanderby, R., J. Biomech. Eng. 119, 392 (1997). CrossRef