Skip to main content Accessibility help
×
Home

n-hexane soot oxidation reactivity in N2/O2 and N2/O2/NO2 atmospheric pressure pulsed corona discharges

  • N. Aggadi (a1), X. Duten (a1), Ph. Marteau (a1), M. Rédolfi (a1) and K. Hassouni (a1)...

Abstract

This paper discusses some aspects of n-hexane soot reactivity in a multi-pin to plate pulsed corona discharge working in the nanosecond regime at atmospheric pressure. The soot-discharge interaction was quantified by measuring the densities of CO, CO2, O3 and NO2 out-coming from the discharge cell. Results showed that CO2 is the major product of soot oxidation. They also showed a strong enhancement of soot oxidation for O2 percentage greater than 10% and cathode temperatures above 425 K. The soot reactivity is significantly enhanced when the discharge frequency is increased. The results obtained were interpreted in term of the competition between the kinetics of plasma active species adsorption and oxidation product desorption.

Copyright

Corresponding author

References

Hide All
[1] J. Kagawa, Toxicology 181, 182, 349 (2002)
[2] Graham, L., Atmos. Environ. 39, 2385 (2005)
[3] Hammer, T., Plasma Sources Sci. T. 11, A196 (2002)
[4] Non-Thermal Plasmas for Pollution Control, edited by B.M. Penetrante, M. Schultheis, NATO ASI Series, subseries G (Springer, Berlin, 1993), Vol. 34, Parts A and B
[5] Y.P. Raizer, Gas discharge physics (Springer Verlag, Berlin, New York, 1991)
[6] Dorai, R., Hassouni, K., Kushner, M.J., J. Appl. Phys. 88, 6060 (2000)
[7] Paraisse, C., Brion, J., Malicet, J., Chem. Phys. Lett. 31–36, 248 (1996)
[8] MAsschelein, W.J., Ozone-Sci. Eng. 20, 489 (1998)
[9] Frenklach, M., Chem. Eng. Sci. 57, 2229 (2002)
[10] Kazakov, A., Frenklach, M., Combust. Flame 114, 484 (1998)
[11] Morrow, R., Lowke, J.J., J. Phys. D Appl. Phys. 30, 614 (1997)
[12] A. Bourdon, K. Hassouni., E. Marode, J. Paillol, P. Ségur, in 15th Int. Conf. on Gas Discharges and their Applications, Toulouse, France, 2004, Conf. Proc., pp. 311–314
[13] Simek, M., Clupek, M., J. Phys. D Appl. Phys. 35, 1171 (2002)
[14] Smith, D.M., Akhter, M.S., Jassim, J.A., Cergides, C.A., Welch, W.F., Chughtai, A.R., Aerosol Sci. Tech. 10, 311 (1989)
[15] Smith, D.M., Chughtai, A.R., J. Geophys. Res. 101, 19607 (1996)
[16] Chughtai, A.R., Kim, J.M., Smith, D.M., J. Atmos. Chem. 45, 231 (2003)
[17] Tabor, K.D., Gutzviller, L., Rossi, M.J., J. Phys. Chem. 98, 6172 (1994)
[18] Alcala-Jornod, C., Van-der-bergh, H., Rossi, J.M., Phys. Chem. Chem. Phys. 2, 5584 (2000)
[19] Gerecke, A., Thielmann, A., Gutzwillier, L., Rossi, M.J., Geophys. Res. Lett. 25, 2453 (1998)
[20] Harano, A., Sadakata, M., Sato, M., J. Chem. Eng. Jpn 24, 100 (1991)
[21] Ngo, T., Sander, E.J., Tong, W.M., Williams, R.S., Anderson, M.S., Surf. Sci. 314, L817 (1994)

Keywords

Related content

Powered by UNSILO

n-hexane soot oxidation reactivity in N2/O2 and N2/O2/NO2 atmospheric pressure pulsed corona discharges

  • N. Aggadi (a1), X. Duten (a1), Ph. Marteau (a1), M. Rédolfi (a1) and K. Hassouni (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.