Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-08T22:56:13.641Z Has data issue: false hasContentIssue false

n-hexane soot oxidation reactivity in N2/O2 and N2/O2/NO2 atmospheric pressure pulsed corona discharges

Published online by Cambridge University Press:  11 October 2006

N. Aggadi
Affiliation:
LIMHP, Université Paris Nord, CNRS UPR 1311, 99 avenue J.B. Clément, 93430 Villetaneuse, France
X. Duten
Affiliation:
LIMHP, Université Paris Nord, CNRS UPR 1311, 99 avenue J.B. Clément, 93430 Villetaneuse, France
Ph. Marteau
Affiliation:
LIMHP, Université Paris Nord, CNRS UPR 1311, 99 avenue J.B. Clément, 93430 Villetaneuse, France
M. Rédolfi
Affiliation:
LIMHP, Université Paris Nord, CNRS UPR 1311, 99 avenue J.B. Clément, 93430 Villetaneuse, France
K. Hassouni*
Affiliation:
LIMHP, Université Paris Nord, CNRS UPR 1311, 99 avenue J.B. Clément, 93430 Villetaneuse, France
Get access

Abstract

This paper discusses some aspects of n-hexane soot reactivity in a multi-pin to plate pulsed corona discharge working in the nanosecond regime at atmospheric pressure. The soot-discharge interaction was quantified by measuring the densities of CO, CO2, O3 and NO2 out-coming from the discharge cell. Results showed that CO2 is the major product of soot oxidation. They also showed a strong enhancement of soot oxidation for O2 percentage greater than 10% and cathode temperatures above 425 K. The soot reactivity is significantly enhanced when the discharge frequency is increased. The results obtained were interpreted in term of the competition between the kinetics of plasma active species adsorption and oxidation product desorption.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Kagawa, Toxicology 181, 182, 349 (2002)
Graham, L., Atmos. Environ. 39, 2385 (2005) CrossRef
Hammer, T., Plasma Sources Sci. T. 11, A196 (2002) CrossRef
Non-Thermal Plasmas for Pollution Control, edited by B.M. Penetrante, M. Schultheis, NATO ASI Series, subseries G (Springer, Berlin, 1993), Vol. 34, Parts A and B
Y.P. Raizer, Gas discharge physics (Springer Verlag, Berlin, New York, 1991)
Dorai, R., Hassouni, K., Kushner, M.J., J. Appl. Phys. 88, 6060 (2000) CrossRef
Paraisse, C., Brion, J., Malicet, J., Chem. Phys. Lett. 31–36, 248 (1996)
MAsschelein, W.J., Ozone-Sci. Eng. 20, 489 (1998) CrossRef
Frenklach, M., Chem. Eng. Sci. 57, 2229 (2002) CrossRef
Kazakov, A., Frenklach, M., Combust. Flame 114, 484 (1998) CrossRef
Morrow, R., Lowke, J.J., J. Phys. D Appl. Phys. 30, 614 (1997) CrossRef
A. Bourdon, K. Hassouni., E. Marode, J. Paillol, P. Ségur, in 15th Int. Conf. on Gas Discharges and their Applications, Toulouse, France, 2004, Conf. Proc., pp. 311–314
Simek, M., Clupek, M., J. Phys. D Appl. Phys. 35, 1171 (2002) CrossRef
Smith, D.M., Akhter, M.S., Jassim, J.A., Cergides, C.A., Welch, W.F., Chughtai, A.R., Aerosol Sci. Tech. 10, 311 (1989) CrossRef
Smith, D.M., Chughtai, A.R., J. Geophys. Res. 101, 19607 (1996) CrossRef
Chughtai, A.R., Kim, J.M., Smith, D.M., J. Atmos. Chem. 45, 231 (2003) CrossRef
Tabor, K.D., Gutzviller, L., Rossi, M.J., J. Phys. Chem. 98, 6172 (1994) CrossRef
Alcala-Jornod, C., Van-der-bergh, H., Rossi, J.M., Phys. Chem. Chem. Phys. 2, 5584 (2000) CrossRef
Gerecke, A., Thielmann, A., Gutzwillier, L., Rossi, M.J., Geophys. Res. Lett. 25, 2453 (1998) CrossRef
Harano, A., Sadakata, M., Sato, M., J. Chem. Eng. Jpn 24, 100 (1991) CrossRef
Ngo, T., Sander, E.J., Tong, W.M., Williams, R.S., Anderson, M.S., Surf. Sci. 314, L817 (1994) CrossRef