Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T04:28:59.447Z Has data issue: false hasContentIssue false

Negative ions formed in N2/CH4/Ar discharge – A simulation of Titan's atmosphere chemistry

Published online by Cambridge University Press:  26 November 2009

G. Horvath*
Affiliation:
Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 842 48 Bratislava, Slovakia Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
Y. Aranda-Gonzalvo
Affiliation:
Plasma & Surface Analysis Division, Hiden Analytical Ltd., 420 Europa Boulevard, Warrington, WA5 7UN, UK
N. J. Mason
Affiliation:
Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
M. Zahoran
Affiliation:
Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 842 48 Bratislava, Slovakia
S. Matejcik
Affiliation:
Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 842 48 Bratislava, Slovakia
Get access

Abstract

The formation of negative ions produced in a negative point-to-plane corona discharge fed by a Ar/N2/CH4 gas mixture has been studied using mass spectrometry. The measurements were carried out in flowing regime at ambient temperature and a reduced pressure of 460 mbar. The CN- anion has been found to be the most dominant negative ion in the discharge and is believed to be the precursor of heavier negative ions such as C3N- and C5N-. The most likely pathway for the formation of such molecular anions is H-loss dissociative electron attachment to HCN, H3CN and H5CN formed in the discharge. These same anions have been detected in Titan's atmosphere and the present experiments may provide some novel insights into the chemical and physical mechanisms prevalent in Titan's atmosphere and hence assist in the interpretation of results from the Cassini Huygens space mission.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

V. Vuitton, P. Lavvas, R.V. Yelle, M. Galand, A. Wellbrock, G.R. Lewis, A.J. Coates, J.-E. Wahlund, Planet. Space Sci. (2009), doi:10.1016/j.pss.2009.07.014 CrossRef
Vinatier, S., 10 colleagues, Icarus 188, 120 (2007) CrossRef
Molina-Cuberos, G.J., López-Moreno, J.J., Rodrigo, R., Geophys. Res. Lett. 27, 1351 (2000) CrossRef
Bakes, E.L.O., McKay, C.P., Bauschlicher, C.W., Icarus 157, 464 (2002) CrossRef
Coates, A.J., Crary, F.J., Lewis, G.R., Young, D.T., Waite, J.H., Sittler, E.C., Geophys. Res. Lett. 34, L22103 (2007) CrossRef
Waite, J.H., Young, D.T., Cravens, T.E., Coates, A.J., Crary, F.J., Magee, B., Westlake, J., Science 316, 870 (2007) CrossRef
Vuitton, V., Yelle, R.V., Lavvas, P., Phil. Trans. R. Soc. A 367, 729 (2009) CrossRef
Ricard, A., Cernogora, G., Fitaire, M., Hochard, L., Kouassi, N., Speller, C., Vacher, J.R., Planet. Space Sci. 43, 41 (1995) CrossRef
Navarro-Gonzalez, R., Ramirez, S.I., Adv. Space Res. 19, 1121 (1997) CrossRef
Mackay, G.I., Betowski, L.D., Payzant, J.D., Schiff, H.I., Bohme, D.K., J. Phys. Chem. 80, 2919 (1976) CrossRef
Barckholtz, C., Snow, T.P., Bierbaum, V.M., Astrophys. J. 547, L171 (2001) CrossRef
G. Horvath, J.D. Skalny, N.J. Mason, M. Zahoran, Plasma Sources Sci. Technol. 18 (2009)
Gonzalvo, Y.A., Whitemore, T.D., Greenwood, C.L., Rees, J.A., Ratcliffe, L.V., Barrett, D.A., Rutten, F.J.M., McCoustra, M.R.S., J. Vac. Sci. Technol. A 23, 550 (2006) CrossRef