Skip to main content Accessibility help
×
Home

Nanostructural defects evidenced in failing silicon-based NMOS capacitors by advanced failure analysis techniques

  • Emilie Faivre (a1) (a2), Roxane Llido (a2), Magali Putero (a1), Lahouari Fares (a2) and Christophe Muller (a1)...

Abstract

An experimental methodology compliant with industrial constraints was deployed to uncover the origin of soft breakdown events in large planar silicon-based NMOS capacitors. Complementary advanced failure analysis techniques were advantageously employed to localize, isolate and observe structural defects at nanoscale. After an accurate localization of the failing area by optical beam-induced resistance change (OBIRCH), focused ion beam (FIB) technique enabled preparing thin specimens adequate for transmission electron microscopy (TEM). Characterization of the gate oxide microstructure was performed by highresolution TEM imaging and energy-filtered spectroscopy. A dedicated experimental protocol relying on iterative FIB thinning and TEM observation enabled improving the quality of electron imaging of defects at atom scale. In that way, the gate oxide integrity was evaluated and an electrical stress-induced silicon epitaxy was detected concomitantly to soft breakdown events appearing during constant voltage stress. The growth of silicon hillocks enables consuming a part of the breakdown energy and may prevent the soft breakdown event to evolve towards a hard breakdown that is catastrophic for device functionality.

Copyright

Corresponding author

References

Hide All
[1] Stathis, J.-H., IEEE Trans. Device Mater. Relib. 1, 43 (2001)
[2] Briere, O., Barla, K., Halimaoui, A., Ghibaudo, G., Solid- State Electron. 41, 987 (1997)
[3] Nikawa, K., Saiki, T., Inoue, S., Ohtsu, M., Appl. Phys. Lett. 74, 1048 (1999)
[4] Erni, R., Aberration-Corrected Imaging in Transmission Electron Microscopy, 1st edn. (Imperial College Press, London, 2010)
[5] Fultz, B., Howe, J., in Transmission Electron Microscopy and Diffractometry of Materials, edited by Fultz, B. and Howe, J., 4th edn. (Springer, Berlin, 2013)
[6] Egerton, R.F., Rep. Prog. Phys. 72, 016502-1, (2009)
[7] Sun, Y., Pey, K.L., Tung, C.H., Lombardo, S., Palumbo, F., Tang, L.J., Radhakrishnan, M.K., in IEEE Proceedings of 11th International Symposium on Physical and Failure Analysis of Integrated Circuits, Taiwan, 2004, p. 57
[8] Wu, E.Y., Suñé, J., Electron Device Lett. 26, 401 (2005)
[9] Degraeve, R., Groeseneken, G., Bellens, R., Depas, M., Maes, H.E., in IEEE Proceedings of International Electron Devices Meeting, Washington DC, 1995, p. 34.5.1
[10] Stathis, J.H., Microelectron. Eng. 36, 325 (1997)
[11] Suñé, J., Electron Device Lett. 22, 296 (2001)
[12] Stathis, J.H., in IEEE Proceedings of International Conference on Microelectronics, Belgrade, 2005, p. 78
[13] Degraeve, R., Groeseneken, G., Bellens, R., Ogier, J.-L., Depas, M., Roussel, P.J., Maes, H.E., IEEE Trans. Electron Devices 45, 904 (1998)
[14] Miranda, E., Suñé, J., Rodriguez, R., Nafria, M., Aymerich, X., Fonseca, L., Campabadal, F., IEEE Trans. Electron Devices 47, 82 (2000)
[15] Miranda, E., Suñé, J., in Proceedings of International Reliability Physics Symposium, Orlando, 2001, p.367
[16] Ranjan, R., Pey, K.L., Tung, C.H., Tang, L.J., Groeseneken, G., Bera, L.K., De Gendt, S., in IEEE Proceedings of International Electron Devices Meeting, San Francisco, 2004, p. 725
[17] Shubhakar, K., Pey, K.L., Raghavan, N., Kushvaha, S.S., Bosman, M., Wang, Z., O’Shea, S.J., Microelectron. Eng. 109, 364 (2013)
[18] Tung, C.H., Pey, K.L., Tang, L.J., Radhakrishnan, M.K., Lin, W.H., Palumbo, F., Lombardo, S., Appl. Phys. Lett. 83, 2223 (2003)
[19] Zschech, E., Langer, E., Engelmann, H.J., Dittmar, K., Mater. Sci. Semicond. Process. 5, 457 (2003)
[20] Pey, K.L., Tung, C.H., Radhakrishnan, M.K., Tang, L.J., Lin, W.H., in IEEE Proceedings of International Electron Devices Meeting, San Francisco, 2002, p. 163
[21] Tung, C.H., Pey, K.L., Lin, W.H., Radhakrishnan, M.K., Electron Device Lett. 23, 526 (2002)
[22] Pey, K.L., Ranjan, R., Tung, C.H., Tang, L.J., Lin, W.H., Radhakrishnan, M.K., in IEEE Proceedings of International Reliability Physics Symposium, Phoenix, 2004, p. 117
[23] Tang, L.J., Pey, K.L., Tung, C.H., Ranjan, R., Lin, W.H., Microelectron. Eng. 80, 170 (2005)
[24] Tung, C.H., Pey, K.L., Tang, L.J., Cao, Y., Radhakrishnan, M.K., Lin, W.H., IEEE Trans. Electron Devices 52, 473 (2005)
[25] Pey, K.L., Tung, C.H., Ranjan, R., Lo, V.L., MacKenzie, M., Craven, A.J., IJNT 4, 347 (2007)
[26] Lombardo, S., Stathis, J.H., Linder, B.P., Pey, K.-L., Palumbo, F., Tung, C.-H., J. Appl. Phys. 98, 121301 (2005)
[27] DiMaria, D.J., J. Appl. Phys. 86, 2100 (1999)

Nanostructural defects evidenced in failing silicon-based NMOS capacitors by advanced failure analysis techniques

  • Emilie Faivre (a1) (a2), Roxane Llido (a2), Magali Putero (a1), Lahouari Fares (a2) and Christophe Muller (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed