Skip to main content Accessibility help

Nano-droplet ejection and nucleation of materials submitted to non-thermal plasma filaments

  • J.-P. Borra (a1) (a2), N. Jidenko (a1) (a2), C. Dutouquet (a3), O. Aguerre (a3), J. Hou (a4) and A. Weber (a4)...


Methods to induce non-thermal atmospheric pressure plasma filaments are presented with related properties for micro, streamer and prevented spark discharges, respectively, induced in planar Dielectric Barrier Discharges with one electrode covered by dielectric material (mono-DBD) or point-to-plane Corona. Two mechanisms of nano-particles formation are depicted from aerosol size distributions and TEM analysis. 0.1–10 mJ prevented spark discharges produce 10–100 nm droplets ejected from melted craters as well as nucleated primary particles and subsequent 10–100 nm agglomerates, by nucleation and coagulation in expanding vapor jets. With smaller energy per filament, 0.1–10 μJ micro-discharges and 0.1–100 μJ streamers, the initial local vapor fluxes emitted from spots of interaction between plasma filaments and electrodes are reduced. Subsequent smaller primary particle density limits the local coagulation in the vapor plume since 2–10 nm non-agglomerated crystalline metal nano-particles are produced in mono-DBD with Au, Ag and Cu electrode. Besides, the evolution of the aerosol size from primary nano-particles to agglomerates with transit time suggests slow coagulation of these primary metal particles in mono-DBD. Aerosol properties depend on the energy per filament and on the electrode. The final size is controlled by plasma parameters and transit time in and after the plasma. The aim is to underline emerging applications of atmospheric pressure plasmas for the production of tailored particles with tunable size, composition and structure with non-thermal plasma filaments to control the resulting properties of nano-powders and materials. Production rates and related energetic yields are compared.


Corresponding author


Hide All
[1]Kodas, T.T., Hampden-Smith, M., Aerosol Processing of Materials (Wiley-VCH, New York, 1999)
[2]Boulos, M., Pfender, E., MRS Bull. 21 8, 65 (1996)
[3]Dekkers, P.J., Friedlander, K., J. Colloid Interface Sci. 248, 295 (2002)
[4]Horvath, H., Gangl, M., J. Aerosol Sci. 34, 1581 (2003)
[5]Jidenko, N., Borra, J.-P., J. Phys. D: Appl. Phys. 39 2, 281 (2006)
[6]Byeon, J.H., Park, J.H., Hwang, J., J. Aerosol Sci. 39 10, 888 (2008)
[7]Borra, J.-P., Plasma Phys. Control Fusion 50, 124036 (2008)
[8]Bau, S., Witchger, O., Gensdarmes, F., Thomas, D., Borra, J.-P., J. Nanopart. Res. 12, 1989 (2010)
[9]Tatoulian, M., Arefi-Khonsari, F., Amouroux, J., Chem. Mater. 18, 5860 (2006)
[10]Mizuno, A., Plasma Phys. Control Fusion 49, 1 (2007)
[11]Sano, N., Wang, H., Chhowalla, M., Naito, M., Kanki, T., Chem. Phys. Lett. 368, 331 (2003)
[12]Odic, E., Parisi, L., Goldman, M., Borra, J.P., in Electrical Discharges for Environmental Purposes, edited by Van Veldhuizen, E.M. (NOVA Science Publishers, New York, 2000), pp. 279312
[13]Jidenko, N., Massines, F., Jimenez, C., Borra, J.-P., J. Phys. D: Appl. Phys. 40 14, 4155 (2007)
[14]Gonzales-Aguilar, J., Moreno, M., Fulcheri, L., J. Phys. D: Appl. Phys. 40, 2361 (2007)
[15]Goldman, M., in Gaseous Electronics, edited by Hirsh, N.M., Oskam, H.J. (Academic Press, New York, 1978), pp. 219290
[16]Heuser, C., Pietsch, G., in IEEE Proc. of the 6th Int. Conf. Gas Discharges, vol. 1 (Edinburgh, UK, 1980), pp. 98101
[17]Petit, M., Jidenko, N., Goldman, A., Goldman, M., Borra, J.-P., Rev. Sci. Instrum. 73 7, 2705 (2002)
[18]Marode, E., Samson, S., Djermoune, D., Deschamps, N., Touzeau, M., DeSouza, A.R., J. Adv. Ox. Tech. 4 3, 305 (1999)
[19]Marode, E., in Proceedings of the Second International Symposium on Non-Thermal Plasma Technology for Gaseous Pollution Control, edited by Chang, J.S., Ferreira, J.L. (Catholic University of Brasilia Press, Brasilia, 1997), pp. 107112
[20]Willeke, K., Baron, P., Aerosol Measurement (Van Nostrand Reinhold, New York, 1993)
[21]Hinds, W.C., Aerosol Technology, 2nd edn. (Wiley, New York, 1999)
[22]Hou, J., Jidenko, N., Borra, J.-P., Weber, A.P., Chem. Ing. Tech. (to be published)
[23]Gray, E., Pharney, J.R., J. Appl. Phys. 45 2, 667 (1974)

Related content

Powered by UNSILO

Nano-droplet ejection and nucleation of materials submitted to non-thermal plasma filaments

  • J.-P. Borra (a1) (a2), N. Jidenko (a1) (a2), C. Dutouquet (a3), O. Aguerre (a3), J. Hou (a4) and A. Weber (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.