Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-08T16:56:28.436Z Has data issue: false hasContentIssue false

Metrological applications of Mueller polarimetry in conical diffraction for overlay characterization in microelectronics

Published online by Cambridge University Press:  27 April 2005

T. Novikova*
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, UMR 7647 (CNRS), École Polytechnique, 91128 Palaiseau Cedex, France
A. De Martino
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, UMR 7647 (CNRS), École Polytechnique, 91128 Palaiseau Cedex, France
R. Ossikovski
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, UMR 7647 (CNRS), École Polytechnique, 91128 Palaiseau Cedex, France
B. Drévillon
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, UMR 7647 (CNRS), École Polytechnique, 91128 Palaiseau Cedex, France
Get access

Abstract

We present a first theoretical evaluation of a new optical technique for diffraction grating metrology. While well-known spectroscopic ellipsometry (SE) is based on classical ellipsometric spectra taken in the usual planar diffraction geometry, we propose to use spectrally resolved full Mueller matrices of the gratings measured in the most general geometry of conical diffraction. We simulate the case of two superimposed one-dimensional (1D) gratings with an overlay defect, i.e. a relative shift of the two gratings with respect to each other. We show that the proposed new technique is sensitive to both the magnitude and sign of the shift, and thus it should be more efficient than usual SE for overlay characterization in real cases.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

International Technology Roadmap for Semiconductors: 2003 Edition, Semiconductor Industry Association, http://public.itrs.net/
Silver, R.M., Jun, J., Fox, S., Kornegay, E., Future Fab Intl. 11, 8 (2001)
Bishop, M., Russo, B., Future Fab Intl. 13, 284 (2002)
Wu, Q. et al., Proc. SPIE 4689, 364 (2002) CrossRef
Yin, X. et al., Proc. SPIE 3998, 449 (2000) CrossRef
Niu, X., Jakatdar, N., Bao, J., Spanos, C.J., IEEE T. Semiconduct. M. 14, 97 (2001)
Hettwer, A., Benesch, N., Schneider, C., Pfitzner, L., Ryssel, H., IEEE T. Semiconduct. M. 15, 470 (2002) CrossRef
Kaplan, B., Novikova, T., De Martino, A., Drévillon, B., Appl. Opt. 43, 1233 (2004) CrossRef
Pezzaniti, J.L., Chipman, R.A., Opt. Eng. 34, 1568 (1995)
Compain, E., Drévillon, B., Rev. Sci. Instrum. 68, 2671 (1997) CrossRef
Lee, J., Koh, J., Collins, R.W., Opt. Lett. 25, 1573 (2000) CrossRef
Garcia-Caurel, E., De Martino, A., Drévillon, B., Thin Solid Films 455–456, 120 (2004) CrossRef
Sullivan, N.T., AIP Conf. Proc. 550, 346 (2001) CrossRef
R.M.A. Azzam, N.M. Bashara, Ellipsometry and polarized light, 2nd edn. (North Holland, 1986)
Collins, R.W., Rev. Sci. Instrum. 61, 2029 (1990) CrossRef
A. Röseler, Infrared Spectroscopic ellipsometry (Academie Verlag, Berlin, 1990)
Drévillon, B., Prog. Cryst. Growth Ch. 27, 1 (1993) CrossRef
Weidner, A., Slodowski, M., Halm, C., Schneider, C., Pfizner, L., Proc. SPIE 5375, 232 (2004) CrossRef
Moharam, M.G., Grann, E.B., Pommet, D.A., Gaylord, T.K., J. Opt. Soc. Am. A 12, 1068 (1995) CrossRef
Moharam, M.G., Pommet, D.A., Grann, E.B., Gaylord, T.K., J. Opt. Soc. Am. A 12, 1077 (1995) CrossRef
Li, L., J. Opt. Soc. Am. A 13, 1024 (1996) CrossRef
Li, L., J. Opt. Soc. Am. A 13, 1870 (1996) CrossRef
R. Petit, Electromagnetic Theory of Grating (Springer-Verlag, Berlin, 1980)