Skip to main content Accessibility help
×
Home

Large-area surface modification of polymers using a cold pulsed glow discharge

  • J. Niu (a1), D. Liu (a1) (a2), J. Chen (a3), H. Ding (a4) and Y. Wu (a1)...

Abstract

In this study, we reported a plasma method to generate the cold pulsed glow discharge for large-area surface modifications of various polymers, such as polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polytetrafluoroethylene (PTFE). The cold plasmas consisting of pulsed and glow-like breakdowns with peak widths of several microseconds may efficiently prevent the heat-sensitive materials from being damaged and greatly improve the surface properties of treated polymers. Analysis indicates that discharge parameters, such as the discharge pressure and gas compositions, may significantly influence the density of radicals or ions generated near the polymer surface, and their energy, which in turn determine the surface properties of treated polymers, such as surface chemical compositions and hydrophobicity. The reaction processes of activated species, such as radicals and energetic ions at the surfaces of treated polymers, are discussed based on the obtained experimental results. Compared to many other plasma techniques formed at high pressure or with a long discharge distance, the low-pressure plasmas generated through small gas spacing from this design may result in the efficient and frequent collisions between the polymer surface and activated species, thus demonstrating an efficient usage of electric energy and feed gas.

Copyright

Corresponding author

References

Hide All
[1]Chan, C.-M., Ko, T.-M., Hiraoka, H., Surf. Sci. Rep. 24, 1 (1996)
[2]Sarra-Bournet, C., Turgeon, S., Mantovani, D., Laroche, G., Plasma Process. Polym. 3, 506 (2006)
[3]Piskarev, M.S., Batuashvili, M.R., Gilman, A.B., High Energy Chem. 44, 534 (2010)
[4]Bartnik, A. et al., Appl. Phys. A: Mater. Sci. Process. 1, 61 (2010)
[5]Borcia, G., Anderson, C.A., Brown, N.M.D., Plasma Source. Sci. Technol. 14, 259 (2005)
[6]Little, U., Buchanan, F., Harkin-Jones, E., Graham, B., Fox, B., Boyd, A., Meenan, B., Dickson, G., Acta Biomater. 5, 2025 (2009)
[7]Sarra-Bournet, C., Turgeon, S., Mantovani, D., Laroche, G., J. Phys. D: Appl. Phys. 39, 3461 (2006)
[8]Choi, J.H., Lee, T.I., Han, I., Baik, H.K., Song, K.M., Lim, Y.S., Lee, E.S., Plasma Source. Sci. Technol. 15, 416 (2006)
[9]Niu, J., Liu, D., Ou, Y., You, Y., Yu, N., Chem. Vap. Deposition 16, 203 (2010)
[10]De Geyter, N., Morent, R., Gengembre, L., Leys, C., Payen, E., Vlierberghe, S.V., Schacht, E., Plasma Chem. Plasma Process. 28, 289 (2008)
[11]Beamson, G., Briggs, D., High Resolution XPS of Organic Polymers (Wiley, Chichester, 1992)
[12]De Geyter, N., Morent, R., Leys, C., Gengembre, L., Payen, E., Van Vlierberghe, S., Schacht, E., Surf. Coat. Technol. 202, 3000 (2008)
[13]Golub, M.A., Wydeven, T., in Fluorinated Surfaces, Coatings and Films, edited by Castner, G., Grainger, D.W., ACS Symp. Ser. 787 (Amer. Chem. Soc., Washington, D.C., 2001) pp. 203212
[14]Gherardi, N., Croquesel, E., Massines, F., in 16th Int. Symp. On Plasma Chemstry, Taormina, 2003
[15]Sira, M., Trunec, D., Stahel, P., Bursikova, V., Navratil, Z., Bursik, J., J. Phys. D: Appl. Phys. 38, 621 (2004)
[16]Guimond, S., Radu, I., Czeremuszkin, G., Carlsson, D.J., Wertheimer, M.R., Plasmas Polym. 7, 71 (2002)
[17]Murata, T., Tatsukawa, M., Okita, Y., Yasuoka, K., Ozone Sci. Eng. 17, 575 (1995)
[18]Liu, D., Ma, T., Yu, S., Xu, Y., Yang, X., J. Phys. D: Appl. Phys. 34, 1651 (2001)
[19]Yuji, T., Fujioka, K., Fujii, S., Akatsuka, H., IEEE Trans. Electr. Electric Eng. 2, 473 (2007)
[20]Motrescu, I., Ogino, A., Tanaka, S., Fujiwara, T., Kodani, S., Kawagishi, H., Popa, G., Nagatsu, M., Thin Solid Films 518, 3585 (2010)
[21]Gupta, B., Hilborn, J., Hollenstein, Ch., Plummer, C.J.G., Houriet, R., Xanthopoulos, N., J. Appl. Polymer Sci. 78, 1083 (2000)
[22]Papageorghiou, L., Panousis, E., Loiseau, J.F., Spyrou, N., Held, B., J. Phys. D 42, 105201 (2009)
[23]Borcia, G., Chiper, A., Rusu, I., Plasma Source. Sci. Technol. 15, 849 (2006)
[24]Koemtzopoulos, C.R., Economou, D.J., Polland, R., Diamond Relat. Mater. 2, 25 (1993)
[25]Zipf, E.C., Mclaughlin, R.W., Planet. Space Sci. 26, 449 (1978)
[26]Khan, F.U., Rehman, N.U., Naseer, S., Naveed, M.A., Qayyum, A., Khattak, N.A.D., Zakaullah, M., Eur. Phys. J. Appl. Phys. 45, 11002 (2009)
[27]Sakamoto, T., Matsuura, H., Akatsuka, H., J. Appl. Phys. 101, 23307 (2007)
[28]Sarra-Bournet, C., Ayotte, G., Turgeon, S., Massines, F., Laroche, G., Langmuir 25, 9432 (2009)
[29]Kuppers, A., Surf. Sci. Rep. 22, 250 (1995)
[30]Muller, K.-H., J. Vac. Sci. Technol. 226, 30 (1993)
[31]Liu, D., Fisher, E.R., J. Vac. Sci. Technol. A 25, 368 (2007)
[32]Borcia, G., Anderson, C.A., Brown, N.M.D., Plasma Source. Sci. Technol. 14, 259 (2005)

Related content

Powered by UNSILO

Large-area surface modification of polymers using a cold pulsed glow discharge

  • J. Niu (a1), D. Liu (a1) (a2), J. Chen (a3), H. Ding (a4) and Y. Wu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.