Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T04:21:25.999Z Has data issue: false hasContentIssue false

Influences of the barrier types and arrangements on dielectric barrier discharge characteristics

Published online by Cambridge University Press:  28 January 2011

A. A. Garamoon*
Affiliation:
Center of plasma technology, Al-Azhar university, Nasr City, Cairo, Egypt
D. M. El-zeer
Affiliation:
Center of plasma technology, Al-Azhar university, Nasr City, Cairo, Egypt
A. Abd El- Ghany
Affiliation:
Department of physics, Faculty of Science (Girls Branch) Al-Azhar university, Nasr City, Cairo, Egypt
D. Ghoneem
Affiliation:
Department of physics, Faculty of Science (Girls Branch) Al-Azhar university, Nasr City, Cairo, Egypt
F. El-Hossary
Affiliation:
Department of physics, Faculty of Science, Sohag University, Sohag, Egypt
Get access

Abstract

The electrical characteristics of DBD have been studied using four different barriers. These barriers are Pyrex glass, Mylar, porous alumina Al2O3 plates and ceramic plates of composition (50% MgO:50% Al2O3). It has been found that the type and the internal composition of the dielectric barriers affect the formation of the DBD modes. Using glass or Mylar as a dielectric causes the formation of the filamentary DBD mode. While using porous alumina plates leads to the generation of the discharge in APGD mode. A quasiglow mode is obtained when a ceramic of composition (50% MgO:50% Al2O3) is used. The effect of using one dielectric barrier, on the DBD characteristics has also been studied. Antisymmetric behavior of the current waveform is obtained when one dielectric barrier is placed on the life electrode.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

V. Schulz-Von der Gathen, Atmospheric pressure glow discharges for surface treatment, in 27th ICPIG, Eindhoven, The Netherlands, 2005
Scott, S.J., Figgures, C.C., Dixon, D.G., Plasma Sources Sci. Technol. 13, 461 (2004) CrossRef
Massines, F., Messaoudi, R., Mayoux, C., Plasma Polym. 3, 1 (1998) CrossRef
Machala, Z., Janda, M., Hensel, K., Jedlovsky, I., Lestinska, L., Foltin, V., Martisovits, V., Morvova, M., J. Mol. Spectrosc. 24, 194 (2007) CrossRef
Li, R., Tang, Q., Yin, S., Sato, T., Appl. Phys. Lett. 90, 131502 (2007) CrossRef
Garamoon, A.A., El-zeer, D.M., Plasma Sources Sci. Technol. 18, 045006 (2009) CrossRef
Sommerville, I., Vidaud, P., Proc. R. Soc. Lond. A 399, 277 (1985) CrossRef
Choi, J.H., Lee, T., Han, I., Oh, B., Jeong, M., Myoung, J., Baika, H.K., Song, K.M., Lim, Y.S., Appl. Phys. Lett. 89, 081501 (2006) CrossRef
Nikonov, V., Bartnikas, R., Wertheimer, M.R., IEEE Trans. Plasma Sci. 29, 866 (2001) CrossRef
Wintle, H.J., Meas. Sci. Technol. 8, 508 (1997) CrossRef
Wagner, H.-E., Brandenburg, R., Kozlov, K.V., Sonnenfeld, A., Michel, P., Behnke, J.F., Vacuum 71, 417 (2003) CrossRef
C.F. Coombs Jr., Printed circuits handbook, 5th edn. (McGraw-Hill Professional, Paris, 2001), p 16.2
Kunhardt, E.E., Plasma Science, IEEE Trans. Plasma Sci. 28, 189 (2000) CrossRef
Yongho, K., Min Suk, C., Wan-Ho, S., Young-Hoon, S., J. Korean Phys. 43, 732 (2003)
Youn, M. Se, Choe, W., Appl. Phys. Lett. 84, 188 (2004)
H.J. Hopman, H. Alberda, I. Attema, H. Zeijlemaker, J. Verhoeven, J. Electron. Spectrosc. Relat. Phenom. 131, 132, 51 (2003)
Wei, L., Zhang, X., Lou, C., Zhu, Z. Ya, Appl. Surf. Sci. 254, 2096 (2008) CrossRef
Scott, S.J., Figgures, C.C., Dixon, D.G., Plasma Sources Sci. Technol. 13, 461 (2004) CrossRef