Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-22T10:59:09.908Z Has data issue: false hasContentIssue false

Influence of substrate growth temperature on the Cu-Pt type ordering in lattice-matched GaInP/GaAs heterostructures

Published online by Cambridge University Press:  15 July 2004

O. Martínez*
Affiliation:
Departamento de Física de la Materia Condensada, Escuela Técnica Superior de Ingenieros Industriales, Paseo del Cauce s/n, 47011 Valladolid, Spain
C. Pelosi
Affiliation:
IMEM-CNR Institute, Parco Area Delle Scienze, 37/A Fontanini 43010 Parma, Italy
G. Attolini
Affiliation:
IMEM-CNR Institute, Parco Area Delle Scienze, 37/A Fontanini 43010 Parma, Italy
E. Martín
Affiliation:
Departamento de Física de la Materia Condensada, Escuela Técnica Superior de Ingenieros Industriales, Paseo del Cauce s/n, 47011 Valladolid, Spain
L. F. Sanz
Affiliation:
Departamento de Física de la Materia Condensada, Escuela Técnica Superior de Ingenieros Industriales, Paseo del Cauce s/n, 47011 Valladolid, Spain
J. Jiménez
Affiliation:
Departamento de Física de la Materia Condensada, Escuela Técnica Superior de Ingenieros Industriales, Paseo del Cauce s/n, 47011 Valladolid, Spain
Get access

Abstract

GaInP layers were grown on GaAs substrates by MOVPE at low pressure in the temperature range between 525 and 600 °C. A detailed analysis of the optical properties of these samples was performed by means of Photoluminescence, Cathodoluminescence and microRaman spectroscopies, aiming to understand the contributions of composition fluctuations, strain, Cu-Pt type ordering, etc., to the properties of the layers. The composition gradients due to the horizontal flow reactor were specifically evaluated by Photoluminescence mapping. The luminescence parameters were analysed in terms of composition, order and strain by Cathodoluminescence imaging. On the other hand, ordering was observed to depend on the growth rate.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Takamoto, T., Ikeda, E., Kurita, H., Appl. Phys. Lett. 70, 381 (1997) CrossRef
Yamaguchi, M., Sol. Energy Mater. Solar Cells 75, 261 (2003) CrossRef
Kobayashi, T., Taira, K., Nakamua, F., Kawai, H., J. Appl. Phys. 65, 4898 (1989) CrossRef
Chin, T. P., Chang, J. C. P., Woodall, J. M., Cheng, W. L., Haddad, G. I., Parks, C., Ramdas, A. K., J. Vac. Sci. Technol. B 13, 750 (1995) CrossRef
Mawst, L. J., Bhattacharya, A., López, J., Botez, D., Garbuzov, D. Z., Demarco, L., Connolly, J. C., Jansen, M., Fang, F., Nabiev, R. F., Appl. Phys. Lett. 69, 1532 (1996) CrossRef
Stringfellow, G. B., J. Appl. Phys. 43, 345 (1972) CrossRef
Gomyo, A., Suzuki, T., Kobayasi, K., Kawata, S., Hino, I., Appl. Phys. Lett. 50, 673 (1987) CrossRef
Yan, C. H., Sun, D. Z., Guo, H. X., Li, X. B., Zu, S. R., Huang, Y. H., Zeng, Y. P., Kong, M. Y., J. Cryst. Growth 136, 306 (1994) CrossRef
Gomyo, A., Suzuki, T., Iulma, S., Phys. Rev. Lett. 60, 2645 (1988) CrossRef
Jusserand, B., Slempkes, S., Solid State Commun. 49, 95 (1984) CrossRef
Zachau, M., Masselink, W. T., Appl. Phys. Lett. 60, 2098 (1992) CrossRef
Delong, M. C., Mowbray, D. J., Hogg, R. A., Skolnick, M. S., J. Appl. Phys. 73, 5163 (1993) CrossRef
Suzuki, T., Gomyo, A., Iijima, S., Kobayashi, K., Kawata, S., Hino, I., Yuasa, T., Jpn J. Appl. Phys. 27, 2098 (1988) CrossRef
Scardova, S., Pelosi, C., Attolini, G., Lo, B., Martínez, O., Martín, E., Ardila, A. M., Jiménez, J., Phys. Stat. Sol. A 195, 50 (2003) CrossRef
Olsen, G.H., Nuese, C.J., Smith, R.T., J. Appl. Phys. 49, 5523 (1978) CrossRef