Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T13:20:30.507Z Has data issue: false hasContentIssue false

Influence of propane additives on the detonation characteristics of H2-air mixtures

Published online by Cambridge University Press:  07 March 2014

Guanbing Cheng*
Affiliation:
Aeronautical Engineering College, Civil Aviation University of China, No. 2898, Jinbei Road, Dongli District, 300300 Tianjin, P.R. China
Pascal Bauer*
Affiliation:
Institut PPRIME UPR 3346, Département Fluides, Thermique, Combustion, CNRS, 1 Av. Clément Ader, BP 109, 86961 Futuroscope Cedex, France
Ratiba Zitoun
Affiliation:
Institut PPRIME UPR 3346, Département Fluides, Thermique, Combustion, CNRS, 1 Av. Clément Ader, BP 109, 86961 Futuroscope Cedex, France
Get access

Abstract

Hydrogen is more and more considered as a potential fuel for propulsion applications. However, due to its low ignition energy and wide flammability limits, H2-air mixtures raise a concern in terms of safety. This aspect can be partly solved by adding an alkane to these mixtures, which plays the role of an inhibitor. The present paper provides data on such binary fuel-air mixtures where various amounts of propane are added to hydrogen. The behavior of the corresponding mixtures, in terms of detonation characteristics and other fundamental properties, such as the cell size of the detonation front and induction delay, are presented and discussed for a series of equivalence ratios and propane addition. The experimental detonation velocity is in good agreement with calculated theoretical Chapman-Jouguet values. Based on soot tracks records, the cell size λ is measured, whereas the induction length Li is derived from data using a GRI-Mech kinetic mechanism. These data allow providing a value of the coefficient K = λ/Li.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haragopala Rao, B., Shrivastava, K.N., Bhakta, H.N., Int. J. Hydrogen Energy 8, 381 (1983)CrossRef
Zitoun, R., Desbordes, D., Combust. Sci. Technol. 144, 114 (1999)CrossRef
Matsui, H., Lee, J.H.S., Colloquium on the Fire and Explosion 17, 1269 (1979)
Chaumeix, N., Pichon, S., Lafosse, F., Paillard, C.E., Int. J. Hydrogen Energy 32, 2216 (2007)CrossRef
Law, C.K., Kwon, O.C., Int. J. Hydrogen Energy 29, 867 (2004)CrossRef
Strehlow, R.A., Engel, C.D., AIAA J. 7, 492 (1969)
Westbrook, C.K., Urtiew, P.A., Chemical Kinetic Prediction of Critical Parameters in Gaseous Detonations, in Proc. of 19th (Int.) Symp. of Combustion (The Combustion Institute, Pittsburg, 1982), p. 583 Google Scholar
Bozier, O., Sorin, R., Zitoun, R., Desbordes, D., Proc. of Euro. Comb. Meeting (ProcessEng Engineering, Vienna, Austria, 2009), p. 167 Google Scholar
Takita, K., Niioka, T., Shock Waves 6, 16 (1996)CrossRef
Cheng, G., Zitoun, R., Bauer, P., Sarrazin, Y., Aerotecnica: J. Aerospace Sci. Technol. Syst. 91, 120 (2012)
Ciccarelli, G., Comb. Sci. Technol. 174, 173 (2002)CrossRef
Ciccarelli, G., Dorofeev, S., Prog. Energy Combust. Sci. 34, 499 (2008)CrossRef
Dorofeev, S.B., Int. J. Hydrogen Energy 34, 5832 (2009)CrossRef
Knystautas, R., Guirao, C., Lee, J.H., Comb. Flame 80, 63 (1982)CrossRef
Kuznetsov, M.S., Alekssev, V.I., Matsukov, I., Dorofeev, S.B., Shock Waves 14, 205 (2005)CrossRef
Lindstedt, R.P., Michels, H.J., Comb. Flame 76, 169 (1989)CrossRef
Yoshida, A., Okuda, Y., Yatsufusa, T., Endo, T., Taki, S., Aoki, S., Umeda, Y., Detonation Properties of Mixed-fuel-and-air Gas Mixtures, in Proc. of 20th Int. Coll. on Dynamics of Explosives and Reactive Systems, Montreal, Canada, 2005, p. 77 Google Scholar
Matignon, C., PhD Dissertation, University of Poitiers, Poitiers, France, 2000.
Medvedev, S.P., Khomik, S.V., Olivier, H., Gelfand, B.E., Examination of the DDT Triggering in an Obstructed Tube, in Proc. of 20th Int. Coll. on Dynamics of Explosives and Reactive Systems, Montreal, Canada, 2005, p. 134Google Scholar
Medvedev, S.P., Polenov, A.N., Khomik, S.V., Gelfand, B.E., DDT Test of Binary Fuel-Air Mixtures in an Obstructed Channel Proc. of 22nd Int. Coll. on Dynamics of Explosives and Reactive Systems, Minsk, Belorussia, 2009, p. 36
Sorin, R., Zitoun, R., Desbordes, D., Shock Waves 15, 137 (2006)CrossRef
Heuzé, O., Bauer, P., Presles, H.N., Quatuor: A Code for Computing Thermodynamic Properties of Detonation and Combustion Products (SERiEP Editions, Paris, 1987), p. 96 Google Scholar
Mitchell, R.E., Kee, R.J., A General-Purpose Computer Code for Predicting Chemical Kinetic Behavior Behind Incident and Reflected shocks, in Report SAND82–8205 (Sandia National Laboratories, New Mexico, USA, 1992)Google Scholar
Frenklach, M., Bowman, T., Smith, G., Gardiner, B., Mechanism of Elementary Chemical Reaction Developed by The Gas Research Institute (GRI), Gri-Mech-3.0 (GRI, 1999), http://www.me.berkeley.edu/gri_mech/Google Scholar
Luche, J., Desbordes, D., Presles, H.N., C.R. Mécanique 334, 323 (2006)CrossRef
Libouton, J.C., Jacques, A., Van Tiggelen, P.J., Proc. Int. Coll. Berthelot-Vieille-Mallard-LeChâtelier, in First Specialists Meeting (Int.) of the Combustion Institute, vol. 2 (Ste Catherine Press Ltd, Bruges, Belgium, 1981), p. 437 Google Scholar
Knystautas, R., Guirao, C., Lee, J.H., Sulmistras, A., Measurement of Cell Size in Hydrocarbon-Air Mixtures and Predictions of Critical Tube Diameter, Critical Initiation Energy, and Detonability Limits, in AIAA Progress Astro. Aero., Vol. 94 (1984), p. 23Google Scholar
Ciccarelli, G., Ginsberg, T., Boccio, J., Economos, C., Sato, K., Kinoshita, M., Comb. Flame 99, 212 (1994)CrossRef
Sorin, R., Bozier, O., Zitoun, R., Desbordes, D., Deflagration to detonation transition in binary fuels H2/CH4 with air mixtures Proc. of 22nd Int. Coll. on Dynamics of Explosives and Reactive Systems, Minsk, Belorussia, 2009, p. 186