Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-03T00:07:01.731Z Has data issue: false hasContentIssue false

Imaging property of two-dimensional quasiperiodic photonic crystals

Published online by Cambridge University Press:  04 June 2008

K. Ren*
Affiliation:
College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Key Laboratory of Opto-electronics Information and Technical Science, Ministry of Education, Tianjin 300072, P.R. China
X.-B. Ren
Affiliation:
Department of Physics, Beijing Normal University, Beijing 100875, P.R. China
Z.-Y. Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P.R. China
D.-Z. Zhang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P.R. China
Get access

Abstract

In this paper, we investigate the propagation of electromagnetic wave in 12-fold symmetric quasiperiod structure employing finite difference time domain (FDTD) method. The quasiperiodic photonic crystal (QPC) consists of a dodecahedral lattice of air holes embedded in a dielectric background. Simulation on wave propagation through a wedge-shaped structure shows that negative refraction can occur at the interface between air and the quasicrystal sample. We further design QPC slab for performance of a high-quality flat lens. Simulation results reveal that non-near-field imaging can be achieved through the QPC slab. TM and TE modes are discussed and both the two modes exhibit the focusing effect. Since the air-hole type QPCs are more easily fabricated and integrated than the dielectric-rod type QPCs, our results might be important to the applications.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Photonic Band Gap Materials, edited by C.M. Soukoulis, Vol. 315, in NATO Advanced Study Institute (Kluwer, Dordrecht, 1996)
Wu, L., Mazilu, M., Karle, T., Krauss, T., IEEE J. Quant. Electron. 38, 915 (2002) CrossRef
Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S., Phys. Rev. B 58, R10096 (1998) CrossRef
Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S., Appl. Phys. Lett. 74, 1212 (1999) CrossRef
Kosaka, H., Kawashima, T., Tomita, A., Sato, T., Kawakami, S., Appl. Phys. Lett. 76, 268 (2000) CrossRef
Solli, D.R., McCormick, C.F., Chiao, R.Y., Hickmann, J.M., Opt. Exp. 11, 125 (2003) CrossRef
Genereux, F., Leonard, S.W., van Diel, H.M., Birner, A., Gosele, U., Phys. Rev. B 63, 161101 (2001) CrossRef
Pentry, J.B., Phys. Rev. Lett. 85, 3966 (2000) CrossRef
Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S., Appl. Phys. Lett. 74, 1370 (1999) CrossRef
Veselago, V.G., Sov. Phys. Usp. 10, 509 (1968) CrossRef
Smith, D.R., Padina, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., Phys. Rev. Lett. 84, 4184 (2000) CrossRef
Luo, C., Johnson, S.G., Joannopoulos, J.D., Pendry, J.B., Phys. Rev. B 65, 201104 (2002) CrossRef
Li, Z.Y., Lin, L.L., Phys. Rev. B 68, 245110 (2003) CrossRef
Wang, X., Ren, Z.F., Kempa, K., Opt. Exp. 12, 2919 (2004) CrossRef
Foteinopoulou, S., Soukoulis, C.M., Phys. Rev. B 72, 165112 (2005) CrossRef
Ren, K., Feng, S., Feng, Z.F., Sheng, Y., Li, Z.Y., Cheng, B.Y., Zhang, D.Z., Phys. Lett. A 348, 405 (2006) CrossRef
Ren, K., Li, Z.Y., Ren, X.B., Feng, S., Cheng, B.Y., Zhang, D.Z., Appl. Phys. A 87, 181 (2007) CrossRef
Moussa, R., Koschny, T., Soukoulis, C.M., Phys. Rev. B 74, 115111 (2006) CrossRef
Parimi, P.V., Lu, W.T., Vodo, P., Sridhar, S., Nature 426, 404 (2003) CrossRef
Lu, Z., Shi, S., Schuetz, C., Prather, D.W., Opt. Exp. 13, 2007 (2005) CrossRef
Feng, Z.F., Zhang, X.D., Ren, K., Feng, S., Li, Z.Y., Cheng, B.Y., Zhang, D.Z., Phys. Rev. B 73, 075118 (2006) CrossRef
Berrier, A., Mulot, M., Swillo, M., Qiu, M., Thylen, L., Talneau, A., Anand, S., Phys. Rev. Lett. 93, 073902 (2004) CrossRef
Schonbrun, E., Tinker, M., Park, W., Lee, J.B., IEEE Photon. Technol. Lett. 17, 1196 (2005) CrossRef
Ren, K., Li, Z.Y., Ren, X.B., Cheng, B.Y., Zhang, D.Z., Phys. Rev. B 75, 115108 (2007) CrossRef
Yang, S., Page, J.H., Liu, Z., Cowan, M.L., Chan, C.T., Sheng, P., Phys. Rev. Lett. 93, 024301 (2004) CrossRef
Monzon, C., Loschialpo, P., Smith, D., Rachford, F., Moore, P., Forester, D.W., Phys. Rev. Lett. 96, 207402 (2006) CrossRef
Mahmoudi, A., Semnani, A., Alizadeh, R., Eur. Phys. J. Appl. Phys. 39, 27 (2007) CrossRef
Feng, Z.F., Zhang, X.D., Wang, Y.Q., Li, Z.Y., Cheng, B.Y., Zhang, D.Z., Phys. Rev. Lett. 94, 247402 (2005) CrossRef
Zoorob, M.E., Charlton, M.D.B., Parker, G.J., Baumberg, J.J., Netti, M.C., Nature (London) 404, 740 (2000) CrossRef
A. Taflove, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech House, Boston, 1995)
Berenger, J.P., J. Comput. Phys. 114, 185 (1994) CrossRef
Luo, C., Johnson, S.G., Joannopoulos, J.D., Pendry, J.B., Phys. Rev. B 68, 045115 (2003) CrossRef
Feng, Z.F., Feng, S., Li, Z.Y., Ren, K., Cheng, B.Y., Zhang, D.Z., J. Appl. Phys. 100, 053702 (2006) CrossRef
Martinez, A., Marti, J., Phys. Rev. B 71, 235115 (2005) CrossRef
Huang, Y.J., Lu, W.T., Sridhar, S., Phys. Rev. A 76, 013824 (2007) CrossRef
Chen, L., He, S., Shen, L., Phys. Rev. Lett. 92, 107404 (2004) CrossRef