Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T21:24:47.868Z Has data issue: false hasContentIssue false

Hydrogen storage: a comparison of hydrogen uptake values in carbon nanotubes and modified charcoals

Published online by Cambridge University Press:  29 September 2010

H.-Y. Miao*
Affiliation:
Department of Electrical Engineering, Tung-Hai University, No. 181, Taichung Harbor Road, Section 3, Taichung, 40704, Taiwan, R.O.C.
G. R. Chen
Affiliation:
Institute of Mechanical Engineering, National Kaohsiung University of Application Science, No. 415, Jiangong Road, Sanmin District, Kaohsiung City, 80778, Taiwan, R.O.C.
D. Y. Chen
Affiliation:
Institute of Electronics Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, R.O.C.
J. T. Lue
Affiliation:
Department of Physics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, R.O.C.
M. S. Yu
Affiliation:
Institute of Nuclear Energy Research, No. 1000, Wenhua Road, Jiaan Village, Longtan, Taoyan, 32546, Taiwan, R.O.C.
Get access

Abstract

We compared the hydrogen uptake weight percentages (wt.%) of different carbonized materials, before and after modification, for their application in hydrogen storage at room temperature. The Sievert's method [T.P. Blach, E. Mac, A. Gray, J. Alloys Compd. 446-447, 692 (2007)] was used to measure hydrogen uptake values on: (1) Taiwan bamboo charcoal (TBC), (2) white charcoal (WC), (3) single-walled carbon nanotubes (SWCNTs) bought from CBT Inc. and (4) homemade multi-walled carbon nanotubes (MWCNTs) grown on TBC. Modified samples were coated with a metal catalyst by dipping in KOH solutions of different concentrations and then activated in a high temperature oven (800 °C) under the atmospheric pressure of inert gas. The results showed that unmodified SWCNTs had superior uptake but that Taiwan bamboo charcoal, after modification, showed enhanced uptake comparable to the SWCNTs. Due to TBC's low cost and high mass production rate, they will be the key candidate for future hydrogen storage applications.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blach, T.P., Mac, E., Gray, A., J. Alloys Compd. 446-447, 692 (2007) CrossRef
M.D. Hampton, D.V. Shur, S.Y. Zaginaichenko, V.I. Trefilov (Eds.), Hydrogen Materials Science and Chemistry of Metal Hydrides, NATO Science Series, v.71 (Kluwer Academic Publishers, Dordrecht, Boston, London, 2002)
Darkrim, F.L., Malbrunot, P., Tartaglia, G.P., Int. J. Hydrogen Energy 27, 193 (2002) CrossRef
Iijima, S., Nature 354, 56 (1991) CrossRef
Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., Heben, M.J., Nature 386, 377 (1997) CrossRef
Dillon, A.C. et al., Fullerenes 3, 716 (1999)
Chen, P., Wu, X., Lin, J., Tan, K.L., Science 285, 91 (1999) CrossRef
Yang, R.T., Carbon 38, 623 (2000) CrossRef
H.W. Zhu et al., in Proc. of 13th World Hydrogen Energy Conf., Beijing, China, 2000 (International Hydrogen Association), pp. 560–564
Chen, C.H., Huang, C.C., Int. J. Hydrogen Energy 32, 237 (2007) CrossRef
Chen, Y., Miao, H.Y., Lue, J.T., Ouyang, M.S., J. Phys. D.: Appl. Phys. 37, 273 (2004) CrossRef
Miao, H.Y., Lue, J.T., Chen, S.K., Tsau, C.H., Ouyang, M.S., Eur. Phys. J. Appl. Phys. 29, 153 (2005) CrossRef
Miao, H.Y., Lue, J.T., Chen, S.K., Chen, S.Y., Ouyang, M.S., Thin Solid Films 484, 58 (2005) CrossRef
Chen, S.Y., Chang, L.W., Peng, C.W., Miao, H.Y., Lue, J.T., J. Nanosci. Nanotechnol. 5, 1 (2005) CrossRef
Miao, H.Y., Lue, J.T., Ouyang, M.S., J. Nanosci. Nanotechnol. 6, 1 (2006) CrossRef
Hsu, C.S., Chang, L.W., Miao, S.Y., Lue, J.T., J. Nanosci. Nanotechnol. 8, 1 (2007)
Jing Kong, et al., Nature 395, 878 (1990) CrossRef
Jing Kong, et al., Appl. Phys. A 69, 305 (1999) CrossRef
Li, Y., Yang, F.H., Yang, R.T., J. Phys. Chem. C 111, 3405 (2007) CrossRef
Yang, Y.L., Yang, R.T., J. Am. Chem. Soc. 128, 8136 (2006)
Yang, Y.L., Yang, R.T., J. Am. Chem. Soc. 128, 726 (2006)
K. Kinoshita, Carbon: Electrochemical and Physicochemical properties, 1st edn. (John Wiley & Sons, New York, NY, 1988)
Takagaki, A. et al., Nature 438, 178 (2005)
Terzyk, A.P., Colloid. Surf. A: Physicochem. Eng. Aspects 177, 23 (2001) CrossRef
Terzyk, A.P., Rychlicki, G., Colloid. Surf. A: Physicochem. Eng. Aspects 163, 135 (2000) CrossRef
Pinero, E.R. et al., Carbon 43, 786 (2005) CrossRef
Gupta, B.K., Tiwari, R.S., Srivastava, O.N., J. Alloys Compd. 381, 301 (2004) CrossRef
Kiyobayashi, T. et al., J. Alloys Compd. 330-332, 666 (2004) CrossRef
Wu, X.B. et al., Int. J. Hydrogen Energy 25, 261 (2000) CrossRef
Pan, W. et al., Int. J. Hydrogen Energy 30, 719 (2005) CrossRef
Li, X., Zhu, H., Xu, C., Mao, Z., Wu, D. et al., Int. J. Hydrogen Energy 28, 1251 (2003) CrossRef
Checchetto, R., Trettel, G., Miotello, A., Sci. Technol. 15, 127 (2004)
Shaijumon, M.M., Rajalakshmi, N., Ryu, H., Ramaprabhu, S., Nanotechnology 16, 518 (2005) CrossRef
Dalgarno, A., McCarroll, R., Proc. Phys. Soc. A 70, 501 (1957) CrossRef