Skip to main content Accessibility help

Higher water splitting hydrogen generation rate for single crystalline anatase phase of TiO2 nanotube arrays

  • C.W. Lai (a1) and S. Sreekantana (a1)


This paper presents a detailed investigation on the effect of heat-treatment process on the highly ordered titanium dioxide (TiO2) nanotube arrays in connection with the photoelectrochemical (PEC) response and hydrogen evolution rate. TiO2 nanotube arrays have been systematically heat-treated to control the transformation of as-anodized TiO2 amorphous structure to crystalline anatase and rutile phases. In this study, single crystalline TiO2 anatase phase exhibited a higher PEC response and hydrogen evolution rate at 400 °C heat treatment. The photocurrent density increase was mainly attributed to the effective transport of photo-induced electrons within the single crystal anatase phase. However, polycrystalline anatase and rutile phases showed the fluctuation in lower photocurrent density upon heat treatment above 500 °C. The mobility of photo-induced electrons was obviously hindered due to the recombination losses in defect sites between the anatase and rutile phase.


Corresponding author


Hide All
[1]Turner, J.A., Science 285, 687 (1999)
[2]Jefferson, M., Renew. Energy 31, 571 (2006)
[3]Tromp, T.K., Shia, R.L., Allen, M., Eiler, J.M., Yung, Y.L., Science 300, 1740 (2003)
[4]Aroutiounian, V.M., Arakelyan, V.M., Shahnazaryan, G.E., Sol. Energy 78, 581 (2005)
[5]Kim, E.Y., Park, J.H., Han, G.Y., J. Power Sources 184, 284 (2008)
[6]Kreuter, W., Hofmann, H., Int. J. Hydrogen Energy 23, 661 (1998)
[7]Mahajan, V.K., Mohapatra, S.K., Misra, M., Int. J. Hydrogen Energy 33, 5369 (2008)
[8]Mohapatra, S.K., Misra, M., Mahajan, V.K., Raja, K.S., J. Catal. 246, 362 (2007)
[9]Paulose, M., Mor, G.K., Varghese, O.K., Shankar, K., Grimes, C.A., J. Photoch. Photobio. A 178, 8 (2006)
[10]Mishra, P.R., Shukla, P.K., Singh, A.K., Srivastave, O.N., Int. J. Hydrogen Energy 28, 1089 (2003)
[11]Zhang, Z., Hossain, M.F., Takahashi, T., Int. J. Hydrogen Energy 35, 8528 (2010)
[12]Mor, G.K., Shankar, K., Varghese, O.K., Grimes, C.A., Nano Lett. 19, 2989 (2004)
[13]Fujishima, A., Honda, K., Nature 238, 37 (1972)
[14]Grätzel, M., Nature 414, 338 (2001)
[15]Lai, C.W., Sreekantan, S., J. Nanomater. 2011, 142463 (2011)
[16]Roy, P., Berger, S., Schmuki, P., Angew. Chem. Int. Ed. 50, 2904 (2011)
[17]Sun, L.D., Zhang, S., Sun, X.W., He, X.D., J. Nanosci. Nanotechnol. 10, 4551 (2010)
[18]Lai, C.W., Sreekantan, S., Lockman, Z., J. Nanosci. Nanotechnol. 12, 4057 (2012)
[19]Lai, C.W., Sreekantan, S., Int. J. Photoenergy 2012, 356943 (2012)
[20]Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K., Renew. Sust. Energ. Rev. 11, 401 (2007)
[21]Allam, N.K., Shankar, K., Grimes, C.A., J. Mater. Chem. 18, 2341 (2008)
[22]Grimes, C.A., J. Mater. Chem. 17, 1451 (2007)
[23]Wang, D., Liu, Y., Yu, B., Zhou, F., Liu, W., Chem. Mater. 21, 1198 (2009)
[24]Yan, J.F., Zhou, F., J. Mater. Chem. 21, 9406 (2011)
[25]Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A., Sol. Energy Mater. Sol. Cells 90, 2011 (2006)
[26]Mahajan, V.K., Misra, M., Raja, K.S., Mohapatra, S.K., J. Phys. D.: Appl. Phys. 41, 125307 (2008)
[27]Fujishima, A., Zhang, X.T., Tryk, D.A., Surf. Sci. Rep. 63, 515 (2008)
[28]Addamo, M., Bellardita, M., Paola, A.D., Palmisano, L., Chem. Commun. 47, 4943 (2006)
[29]Zhang, H., Banfield, J.F., J. Phys. Chem. B 104, 3481 (2000)
[30]Hengerer, R., Bolliger, B., Erbudak, M., Gratzel, M., Surf. Sci. 460, 162 (2000)
[31]Sreekantan, S., Lai, C.W., Lockman, Z., J. Electrochem. Soc. 158, 397 (2011)
[32]Lai, C.W., Sreekantan, S., Micro Nano Lett. 7, 443 (2012)
[33]Lai, C.W., Sreekantan, S., E, P.S., J. Mater. Res. 27, 1695 (2012)
[34]Regonini, D., Jaroenworaluck, A., Stevens, R., Bowen, C.R., Surf. Interface Anal. 42, 139 (2010)
[35]Lai, Y.K., Huang, J.Y., Zhang, H.F., Subramaniam, V.P., Tang, Y.X., Gong, D.G., Sundar, L., Sun, L., Chen, Z., Lin, C.J., J. Hazard. Mater. 184, 855 (2010)
[36]Sreekantan, S., Hazan, R., Lockman, Z., Thin Solid Films 518, 16 (2009)
[37]Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A., Dickey, E.C., J. Mater. Res. 18, 156 (2003)
[38]Ghicov, A., Schmuki, P., Chem. Commum. 20, 2791 (2009)
[39]Mohammadpour, R., Iraji Zad, A., Ahadian, M.M., Taghavinia, N.N., Dolati, A., Eur. Phys. J. Appl. Phys. 47, 10601 (2009)
[40]Ahn, K.S., Lee, S.H., Dillon, A.C., Tracy, E., Pitts, R., J. Appl. Phys. 101, 093524 (2007)
[41]Inoue, Y., Enery Environ. Sci. 2, 364 (2009)
[42]Sclafani, A., Hermann, J.M., J. Photochem. Photobiol. A 113, 181 (1998)
[43]Jaturong, J., Sarapong, P., Yoshikazu, S., Susumu, Y., J. Solid State Chem. 180, 1743 (2007)
[44]Liu, Y., Hagfeldt, A., Xiao, X.R., Lindquist, S.E., Sol. Energy Mater. Sol. Cells 55, 267 (1998)

Related content

Powered by UNSILO

Higher water splitting hydrogen generation rate for single crystalline anatase phase of TiO2 nanotube arrays

  • C.W. Lai (a1) and S. Sreekantana (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.