Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T10:43:32.525Z Has data issue: false hasContentIssue false

Hall effect sensors integrated in standard technology and optimized with on-chip circuitry*

Published online by Cambridge University Press:  06 October 2006

J.-B. Kammerer*
Affiliation:
Institut d'Électronique, du Solide et des Systèmes (InESS), 23 rue du Lœss, BP 20, 67037 Strasbourg Cedex 2, France
L. Hébrard
Affiliation:
Institut d'Électronique, du Solide et des Systèmes (InESS), 23 rue du Lœss, BP 20, 67037 Strasbourg Cedex 2, France
V. Frick
Affiliation:
Institut d'Électronique, du Solide et des Systèmes (InESS), 23 rue du Lœss, BP 20, 67037 Strasbourg Cedex 2, France
P. Poure
Affiliation:
Laboratoire d'Instrumentation Électronique de Nancy (LIEN), Faculté des Sciences et Techniques, BP 239, 54506 Vandœuvre-les-Nancy Cedex, France
F. Braun
Affiliation:
Institut d'Électronique, du Solide et des Systèmes (InESS), 23 rue du Lœss, BP 20, 67037 Strasbourg Cedex 2, France
Get access

Abstract

While silicon is not the best semi-conductor material to design Hall effect sensors, it is widely used because Hall devices are fully compatible with standard processes such as CMOS or Bi-CMOS. Hall effect sensors can thus take advantage of on-chip circuitry to counterbalance the poor intrinsic metrological characteristics of silicon Hall devices, and low cost integrated smart magnetometers can be designed using standard technologies. Conventional Hall plate as well as the spinning-current method, which is the present state of the art technique to improve performances of integrated Hall devices, are reviewed in this paper. Then a new multi-strips Hall device and its specific biasing circuit are introduced. This new device allows to multiply by n the absolute sensitivity of the Hall sensor where n is the number of strips, but it suffers from offset. To overcome this drawback, a Hall sensors network which also allows to increase the sensitivity while reducing the offset is proposed. Finally a comparison between the Hall sensors network and the spinning-current is done, showing that both techniques are complementary and should be combined to design high resolution Hall sensor systems.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29–30 janvier 2004.

References

R. Popović, Z. Randjelovic, D. Manic, Sensor. Actuat. A 97, 98, 39 (2002)
A. Frazier, Z. Liub, L. Tianc, J. Parhamd, in Proceedings of IEEE Sensors, Orlando, Florida, USA, 2002, pp. 1565–1570
M. Metz, A. Haberli, M. Schneider, R. Steiner, C. Maier, H. Baltes, in Proceedings of TRANSDUCERS'97, Chicago, USA, 1997, pp. 385–388
Demierre, M., Schurig, E., Schott, C., Besse, P.-A., Popović, R., Sensor. Actuat. A 116, 39 (2004) CrossRef
A. Xin, B. Hai, S. Jiahua, Y. Yihan, in Proceedings of POWERCON'98, Beijing, China, 1998, pp. 1015–1020
Frick, V., Hébrard, L., Poure, P., Anstotz, F., Braun, F., IEEE Sensors J. 3, 752 (2003) CrossRef
M.J. Caruso, in Proceedings of IEEE Position Location and Navigation Symposium, San Diego, USA, 2000, pp. 177–184
Schlageter, V., Besse, P.-A., Popović, R., Kucera, P., Sensor. Actuat. A 92, 37 (2001) CrossRef
Paperno, E., Keisar, P., IEEE T. Magn. 40, 1530 (2004) CrossRef
Popović, R., Flanagan, J., Besse, P.-A., Sensor. Actuat. A 56, 39 (1996)
J.-B. Kammerer, Capteurs intégrés pour la mesure à haute résolution de champs magnétiques, Ph.D. thesis, Université Louis Pasteur, Strasbourg, 2004
Bilotti, A., Monreal, G., Vig, R., IEEE J. Solid St. Circ. 32, 829 (1997) CrossRef
A. Bakker, A.A. Bellekom, S.M. Middelhoek, J.H. Huijsing, in Proceedings of EUROSENSORS XIII, 1999, pp. 543–544
Steiner, R., Maier, C., Hàberli, A., Steiner, F.-P., Baltes, H., Sensor. Actuat. A 66, 167 (1998) CrossRef
N. Kordas, S. Derksen, H.-L. Fiedler, M. Schmidt, A. Yasujima, M. Matsui, S. Nagano, K. Ishibashi, in Proceedings of ISSCC99, 1999, pp. 134–135
M. Demierre, S. Pesenti, J. Frounchi, P.-A. Besse, R. Popović, Sensor. Actuat. A 97, 98, 39 (2002)
Baltes, H., Popović, R., Proc. IEEE 74, 1107 (1986) CrossRef
P.M. Drljaca, F. Vincent, P.-A. Besse, R.S. Popović, Sensor. Actuat. A 97, 98, 10 (2002)
Popović, R.S., Sensor. Actuat. A 85, 9 (2000) CrossRef
E. Schurig, M. Demierre, C. Schott, R.S. Popović, Sensor. Actuat. A 97, 98, 47 (2002)
S. Sze, Semiconductor Sensors (Wiley-Interscience, 1994)
Frick, V., Hébrard, L., Poure, P., Braun, F., Analog Integr. Circ. S. 36, 165 (2003) CrossRef
Versnel, W., J. Appl. Phys. 52, 4659 (1981) CrossRef
S. Middelhoek, S. Audet, Silicon sensors (Academic Press, 1989)
Müller-Schwanneke, C., Jost, F., Marx, K., Lindenkreuz, S., von Klitzing, K., Sensor. Actuat. A 81, 18 (2000) CrossRef
Sutor, A., Lerch, R., Hohe, H.-P., Gavesi, M., IEEE Sensors J. 1, 345 (2001) CrossRef
P. Munter, in Proceedings of the 5th International Conference on Solid-State Sensors and Actuactors, Montreux, Switzerland, 1989, pp. 430–434
Popović, R., Sensor. Actuat. A 5, 253 (1984) CrossRef
Hébrard, L., Kammerer, J.-B., Braun, F., IEEE T. Circuits I: Regular Papers 52, 1653 (2005)
Sackinger, E., Guggenbuhl, W., IEEE J. Solid-St. Circ. 25, 289 (1990) CrossRef
Palmisano, G., Palumbo, G., Pennisi, S., Analog Integr. Circ. S. 27, 177 (2001) CrossRef
Kammerer, J.-B., Hébrard, L., Frick, V., Poure, P., Braun, F., IEEE Sensors J. 3, 700 (2003) CrossRef
Enz, C., Temes, G., Proc. IEEE 84, 1584 (1996) CrossRef
J.-B. Kammerer, L. Hébrard, F. Braun, in Proceedings of the 3rd IEEE conference on sensors, Vienna, Austria, 2004, pp. 1071–1074