Skip to main content Accessibility help
×
Home

Growth behaviors of ZnO nanostructure on SMAT Cu0.62Zn0.38 during oxidation

  • Jun Peng Wang (a1), Chun Hua Xu (a1), Zhen Biao Zhu (a1), Chun Sheng Wen (a2), Jian Lu (a2) and San Qiang Shi (a2)...

Abstract

Cu0.62Zn0.38 foil was subjected to surface mechanical attrition treatment (SMAT) processing first. Growth behavior of ZnO nanostructure on the SMAT Cu0.62Zn0.38 surface during thermal oxidation was investigated in this paper. The original and SMAT Cu0.62Zn0.38 foils were thermally oxidized at 400 ~ 700 °C under various gaseous environments, including nitrogen and mixture of N2-O2 at a pressure of 1 atm. for 3 h. The oxidized specimens were characterized with a scanning electron microscope, an X-ray diffractometer and a transmission electron microscope. It is found that nanosheets are easily formed on the SMAT specimen surface. The favorable formation of nanosheets relates to twin lamellae structure of Cu0.62Zn0.38 formed during SMAT processing.

Copyright

Corresponding author

ae-mail: cjxu55@yahoo.com

References

Hide All
[1] Kind, H., Yan, H.Q., Messer, B., Law, M., Yang, P.D., Adv. Mat. 14, 158 (2002)
[2] Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R., Yang, P.D., Science 292, 1897 (2001)
[3] Li, Y.B., Bando, Y., Sato, T., Kurashima, K., Appl. Phys. Lett. 81, 144 (2002)
[4] Yang, P.D., Yan, H.Q., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R.R., Choi, H.J., Adv. Funct. Mater. 12, 323 (2002)
[5] Zheng, M.J., Zhang, L.D., Li, G.H., Shen, W.Z., Chem. Phys. Lett. 363, 123 (2002)
[6] Park, W.I., Kim, D.H., Jung, S.W., Yi, G.C., Appl. Phys. Lett. 80, 4232 (2002)
[7] Greene, L.E., Law, M., Goldberger, J., Kim, F., Johnson, J.C., Zhang, Y.F., Saykally, R.J., Yang, P.D., Ang. Chem. Int. Ed. 42, 3031 (2003)
[8] Ren, S., Bai, Y.F., Chen, J., Deng, S.Z., Xu, N.S., Wu, Q.B., Yang, S.H., Mat. Lett. 61, 666 (2007)
[9] Wen, X.G., Fang, Y.P., Pang, Q., Yang, C.L., Wang, J.N., Ge, W.K., Wong, K.S., Yang, S.H., J. Phys. Chem. B 109, 15303 (2005)
[10] Huo, K.F., Hu, Y.M., Fu, J.J., Wang, X.B., Chu, P.K., Hu, Z., Chen, Y., J. Phys. Chem. C 111, 5876 (2007)
[11] Wang, K., Tao, N.R., Liu, G., Lu, J., Lu, K., Acta Mater. 54, 5281 (2006)
[12] Xu, C.H., Zhu, Z.B., Li, G.L., Xu, W.R., Huang, H.X., Mater. Chem. Phys. 124, 252 (2010)
[13] Xu, C.H., Zhu, Z.B., Lui, H.F., Surya, C., Shi, S.Q., Superlattice Microstruct. 49, 408 (2011)
[14] Cullity, B.D., Stock, S.R., Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001)
[15] Sakharova, N.A., Fernandes, J.V., Vieira, M.F., Mater. Sci. Eng. A: Struct. Mater. 507, 13 (2009)
[16] Pilling, N.B., Bedworth, R.E., J. Inst. Metals 29, 529 (1923)
[17] Xu, C.H., Gao, W., Mat. Res. Innovat. 3, 231 (2000)
[18] Birks, B., Introduction to High Temperature Oxidation of Metals, 2nd edn. (Cambridge University Press, Cambridge, 2006)
[19] Guo, K.X., Classification and Micrograph of Copper and Alloys (China Scientific Publishing Company, Xian, 2005)
[20] Bradford, S.A., Corrosion Control, 2nd edn. (ASM International, CASTI Publishing Inc., Alberta, Canada, 2004)
[21] Nechaev, Y.S., DDF 194–199, 1713 (2001)
[22] Raynaud, G.M., Rapp, R.A., Oxid. Met. 21, 89 (1984)
[23] Xiao, G.H., Tao, N.R., Lu, K., Mater. Sci. Eng. A: Struct. Mater. 513–514, 13 (2009)
[24] Murr, L.E., Esquivel, E.V., J. Mater. Sci. 39, 1153 (2004)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed