Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T01:22:22.834Z Has data issue: false hasContentIssue false

Fabrication and characterization of nonvolatile organic thin film memory transistors operating at low programming voltages

Published online by Cambridge University Press:  10 October 2012

S.J. Fakher
Affiliation:
School of Electronic Engineering, Bangor University, Dean street, Bangor LL57 1UT, UK
M.F. Mabrooka*
Affiliation:
School of Electronic Engineering, Bangor University, Dean street, Bangor LL57 1UT, UK
Get access

Abstract

The electrical behavior of organic memory devices based on pentacene thin film transistor using polymethylmethacrylate (PMMA) as the gate dielectric is reported. Memory behaviors based on incorporating a layer of thermally evaporated metallic floating gate are demonstrated. The gate electrode was made from 50 nm evaporated aluminum on glass substrate, and the drain and source electrodes were fabricated by evaporating 50 nm gold. The effects of the insulator thickness on the stability of pentacene layer are also investigated. The memory transistors containing the floating gate exhibited clear hysteresis in their electrical characteristics (output and transfer characteristics). Under an appropriate gate bias (2 s pulses), the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses of 1 V resulted in clear write and erase states. The shifts in the threshold voltage of the transfer characteristics were attributed to the charging and discharging of the floating gate. The detailed programming and erasing procedures are reported.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Müllen, K., Scherf, U. (eds.), Organic Light Emitting Devices (Wiley-VCH, Weinheim, 2006), p. 333Google Scholar
Zhou, L., Wanga, L., Wu, A., Sun, S., Park, J., Jackson, S., Thomas, N., Appl. Phys. Lett. 88, 083502 (2006)CrossRef
Gebeyehua, D., Brabeca, C.J., Padingerb, F., Fromherzb, T., Hummelenc, J.C., Badtd, D., Schindlerd, H., Sariciftcia, N.S., Synth. Met. 118, 1 (2001)CrossRef
Har-Lavan, R., Ron, I., Thieblemont, F., Cahen, D., Appl. Phys. Lett. 94, 043308 (2009)CrossRef
Gelinck, G.H., Huitema, H.E.A., Veenendaal, E., Cantatore, E., Schrijnemakers, L., Putten, J.B., Putten, P.H., Geuns, T.C.T., Beenhakkers, M., Giesbers, J.B., Huisman, Bart-Hendrik, Meijer, E.J., Benito, E.M., Touwslager, F.J., Marsman, A.W., Rens, B.J.E., Leeuw, D.M., Nat. Mater. 3, 106 (2004)CrossRef
Ball, J.M., Wöbkenberg, P.H., Colléaux, F., Heeney, M., Anthony, J.E., McCulloch, I., Bradley, D.D.C., Anthopoulos, T.D., Appl. Phys. Lett. 95, 103310 (2009)CrossRef
Baude, P.F., Ender, D.A., Haase, M.A., Kelley, T.W., Muyres, D.V., Theiss, S.D., Appl. Phys. Lett. 82, 3964 (2003)CrossRef
Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., Sakurai, T., Proc. Natl. Acad. Sci. USA 102, 12321 (2005)CrossRef
Sekitani, T., Takamiya, M., Noguchi, Y., Nakano, S., Kato, Y., Sakurai, T., Someya, T., Nat. Mater. 6, 221 (2007)CrossRef
Sleiman, A., Mabrook, M.F., Nejm, R.R., Ayesh, A., Al Ghaferi, A., Petty, M.C., Zeze, D.A., J. Appl. Phys. 112, 024509 (2012)CrossRef
Mabrook, M.F., Yun, Y., Pearson, C., Zeze, D.A., Petty, M.C., IEEE Electron Device Lett. 30, 632 (2009)CrossRef
Wang, W., Ma, D., Appl. Phys. Lett. 96, 203304 (2010)CrossRef
Nguyen, C.A., Mhaisalkar, S.G., Ma, J., Lee, P.S., Org. Electr. 9, 1087 (2008)CrossRef
Lee, K.H., Lee, G., Lee, K., Oh, M.S., Im, S., Appl. Phys. Lett. 94, 093304 (2009)CrossRef
Sekitani, T., Zaitsu, K., Noguchi, Y., Ishibe, K., Takamiya, M., Sakurai, T., Someya, T., IEEE Trans. Electron Devices 56, 1027 (2009)CrossRef
Schroeder, R., Majewski, L.A., Grell, M., Adv. Mat. 16, 633 (2004)CrossRef
Naber, R.C.G., Tanase, C., Blom, P.W.M., Gelinck, G.H., Marsman, A.W., Touwslager, F.J., Setayesh, S., de Leeuw, D.M., Nat. Mater. 4, 243 (2005)CrossRef
Sekitani, T., Yokota, T., Zschieschang, U., Klauk, H., Bauer, S., Takeuchi, K., Takamiya, M., Sakurai, T., Someya, T., Science 326, 1516 (2009)CrossRef
Bao, Z., Locklin, J., Organic Field-Effect Transistors, 1st edn. (CRC, Boca Raton, 2007)CrossRefGoogle Scholar
Hwang, D.K., Kim, C.S., Choi, J.M., Lee, K., Park, J.H., Kim, E., Baik, H.K., Kim, J.H., Im, S., Adv. Mat. (Weinheim, Germany) 18, 2299 (2006)CrossRef
Puigdollers, J., Voz, C., Orpella, A., Quidant, R., Martin, I., Vetter, M., Alcubilla, R., Org. Electr. 5, 67 (2004)CrossRef
Veres, J., Ogier, S., Lloyd, G., Chem. Mater. 16, 4543 (2004)CrossRef
Horowitz, G., Deloffre, F., Garnier, F., Hajlaoui, R., Hmyene, M., Yassar, A., Synth. Met. 54, 435 (1993)CrossRef
Jin, S.H., Yu, J.S., Lee, C.A., Kim, J.W., Park, B.G., Lee, J.D., J. Korean Phys. Soc. 44, 181 (2004)
Shin, I.S., Kim, J.M., Jeun, J.H., Yoo, S.H., Ge, Z., Hong, J.I., Bang, J.H., Kim, Y.S., Appl. Phys. Lett. 100, 183307 (2012)CrossRef
Mukherjee, B., Mukherjee, M., Org. Electr. 10, 1282 (2009)CrossRef
Chaure, N.B., Basova, T., Ray, A.K, Gurek, A.G, Ahsen, V., J. Phys. D: Appl. Phys. 42, 125103 (2009)CrossRef