Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T08:18:29.089Z Has data issue: false hasContentIssue false

Experimental and quantitative investigation of a free round jet

Published online by Cambridge University Press:  17 September 2010

Y. Zaouali*
Affiliation:
Unit of Metrology in Fluid Mechanics and Thermal (03/UR/11-09), National School of Engineers of Monastir, Avenue Ibn Eljazzar, 5019 Monastir, Tunisia
S. Ammar
Affiliation:
Unit of Metrology in Fluid Mechanics and Thermal (03/UR/11-09), National School of Engineers of Monastir, Avenue Ibn Eljazzar, 5019 Monastir, Tunisia
N. Kechiche
Affiliation:
Unit of Metrology in Fluid Mechanics and Thermal (03/UR/11-09), National School of Engineers of Monastir, Avenue Ibn Eljazzar, 5019 Monastir, Tunisia
J. Jay
Affiliation:
Thermal Centre of Lyon (CETHIL – UMR CNRS 5008), National Institute of Applied Sciences of Lyon, INSA de Lyon, 9 rue de la Physique, 69621 Villeurbanne Cedex, France
H. Ben Aissia
Affiliation:
Unit of Metrology in Fluid Mechanics and Thermal (03/UR/11-09), National School of Engineers of Monastir, Avenue Ibn Eljazzar, 5019 Monastir, Tunisia
Get access

Abstract

Flow visualization, basic image processing and statistical treatment are used to investigate the flow characteristics of an axisymmetric free air jet having an initially uniform velocity profile. Vortical structures and their development in the transition zone of the jet are visualized for a range of Reynolds numbers from 1300 to 1700. It is shown the onset and growth of these structures which propagate downstream of the nozzle exit at approximately 0.65 of the velocity of the mean flow. The duration of this development mechanism, before reaching the zone of turbulence, is estimated at 7.6 × 10-3. Near-field and intermediate-field region lengths, separation distance between two neighboring vortical structures, apparition frequency and jet Strouhal number are measured as functions of the Reynolds number. In particular, it is shown that the Strouhal number, which is estimated at 0.64 in our case, is independent of Reynolds numbers.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Popiel, C.O., Trass, O., Exp. Therm. Fluid Sci. 4, 253 (1991) CrossRef
Cenedese, A., Doglia, G., Romano, G.P., De Michele, G., Tanzini, G., Exp. Therm. Fluid Sci. 9, 125 (1994) CrossRef
Cornaro, C., Fleischer, A.S., Goldstein, R.J., Exp. Therm. Fluid Sci. 20, 66 (1999) CrossRef
Mi, J., Nobes, D.S., Nathan, G.J., J. Fluid Mech. 432, 91 (2001)
Boujemaa, S., Amielh, M., Chauve, M.P., C.R. Mecanique 332, 933 (2004) CrossRef
Matsuda, T., Sakakibara, J., Phys. Fluids 17, 1 (2005) CrossRef
Liang, H., Maxworthy, T., J. Fluid Mech. 525, 115 (2005) CrossRef
Duda, J.C., Lagor, F.D., Fleischer, A.S., Exp. Therm. Fluid Sci. 32, 1754 (2008) CrossRef
Kozlov, G.V., Grek, G.R., Sorokin, A.M., Litvinenko, Y.A., Thermophys. Aeromech. 15, 55 (2008) CrossRef
Nastase, I., Meslem, A., J. Visual. Jpn 11, 309 (2008) CrossRef
Shinneeb, A.-M., Bugg, J.D., Balachandar, R., J. Turbul. 9, 1 (2008) CrossRef
Fellouah, H., Pollard, A., Int. J. Heat Mass Transfer 52, 3943 (2009) CrossRef
Batchelor, G.K., Gill, A.E., J. Fluid Mech. 14, 529 (1962) CrossRef
Crow, S.C., Champagne, F.H., J. Fluid Mech. 48, 547 (1971) CrossRef
Mollendorf, J.C., Gebhart, B., J. Fluid Mech. 61, 367 (1973) CrossRef
Cohen, J., Wygnanski, I., J. Fluid Mech. 176, 191 (1987) CrossRef
H. Ben Aissia, Doctoral state thesis, University of Tunis-Elmanr Tunisia, 2002
Zaouali, Y., Ben Aissia, H., Kechiche, N., Jay, J., Schon, J.-P., J. Flow Vis. Image Process. 11, 207 (2004) CrossRef
J. Fontaine, Ph.D. thesis, Institut National Polytechnique Toulouse, 2005
Becker, H.A., Massaro, T.A., J. Fluid Mech. 31, 435 (1968) CrossRef
F.K. Browand, J. Laufer, in the 4th Biennial Symposium on Turbulence in Liquids (Sciences Press, Princeton, 1975), p. 333
Yule, A.J., J. Fluid Mech. 89, 413 (1978) CrossRef
Zaman, K.B.M.Q., Hussain, A.K.M.F., J. Fluid Mech. 101, 449 (1980) CrossRef
Zaman, K.B.M.Q., Hussain, A.K.M.F., J. Fluid Mech. 138, 325 (1984) CrossRef
Liepmann, D., Gharib, M., J. Fluid Mech. 245, 643 (1992) CrossRef
Grant, A.J., J. Fluid Mech. 66, 707 (1974) CrossRef
Acton, E.A., J. Fluid Mech. 98, 1 (1980) CrossRef
Danaila, I., Dusek, J., Anselmet, F., Phys. Fluids 9, 3323 (1997) CrossRef
Kwon, S.J., Seo, I.W., Exp. Fluids 38, 801 (2005) CrossRef
S. Gupta, D. Abdo, J. Brinster, D. Roumier, E. Studer, I. Tkatschenko, H. Paillere, Congrès Francophone de Techniques Laser, Toulouse, France, 2006
H.E. Fiedler, in Flow Control: Fundamentals and Practices, edited by M.G. El-Hak, A. Pollard, J.P. Bonnet (Springer-Verlag, Germany, 1998)
P.G. Drazin, W.H. Reid, Hydrodynamic Stability, 2nd edn. (Cambridge University Press, UK, 2004)
Gutmark, E., Ho, C.M., Phys. Fluids 26, 2932 (1983) CrossRef
Loiseleux, T., Chomaz, J.-M., Phys. Fluids 15, 511 (2003) CrossRef