Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-15T07:49:04.427Z Has data issue: false hasContentIssue false

Enhanced critical current density using Nd2O3 nano-islands on NdBa2Cu3O7–δ thin films prepared by PLD

Published online by Cambridge University Press:  28 March 2013

Erdal Sönmez*
Affiliation:
K. K. Education Faculty, Department of Physics, Atatürk University, Erzurum, Turkey Graduate School of Natural and Applied Sciences, Department of Nanoscience and Nanoengineering, Advanced Materials Research Laboratory, Atatürk University, 25240 Erzurum, Turkey
Mehmet Ertuğrul
Affiliation:
Graduate School of Natural and Applied Sciences, Department of Nanoscience and Nanoengineering, Advanced Materials Research Laboratory, Atatürk University, 25240 Erzurum, Turkey Engineering Faculty, Department of Electric-Electronic, Atatüsrk University, Erzurum, Turkey
Get access

Abstract

In this study, the effect of Nd2O3 nano-islands on the critical properties of NdBa2Cu3O7–δ (Nd-123) superconductive thin films grown on Ni-W metallic substrates was investigated. Nd-123 superconducting ceramic materials were prepared by solid-state reaction technique and then this ceramic material was used as target for producing the Nd-123 superconductive thin films with pulsed laser deposition (PLD). Nano-islands were prepared with the deposition of Nd2O3 by PLD. The obtained superconductive thin films were characterized by X-ray diffraction (XRD) analysis, morphological investigations of atomic force microscopy (AFM) images, transport analysis such as Jc and R-T measurements by four-point probe (FPP). As a result of these analyses, it was determined that nano-islands have important role for the flux pinning and it provides the increase of about 32% for the critical current value (Jc).

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Murakami, M., Morita, M., Doi, K., Miyamoto, K., Jpn J. Appl. Phys. 28, 1189 (1989)CrossRef
Neeleshwar, S., Reddy, P.V., Muralidhar, M., Koblischka, M.R., Murakami, M., Mat. Sci. Eng. B 65, 164 (1999)CrossRef
Song, K.J., Ko, R.K., Lee, Y.S., Yang, J.S., Park, Y.M., Dixit, M., Kim, H.S., Ha, H.S., Ha, D.W., Oh, S.S., Kim, D.J., Park, C., Yoo, S.-I., Physica C 445–448, 656 (2006)CrossRef
Sueyoshi, T., Inada, S., Ueno, T., Jyodai, N., Fujiyoshi, T., Miyahara, K., Ikegami, T., Ebihara, K., Miyagawa, R., Chimi, Y., Ishikawa, N., Physica C 424, 153 (2005)CrossRef
Matsumoto, K., Mele, P., Supercond. Sci. Technol. 23, 014001 (2010)CrossRef
Cao, R., Horng, L., Wu, J.C., Yang, T.J., Wu, T.C., J. Supercond. Nov. Magn. 23, 1051 (2010)CrossRef
Ibi, A., Miyata, S., Kuriki, R., Kobayashi, H., Fukushima, H., Kinoshita, A., Kato, T., Hirayama, T., Yamada, Y., Shiohara, Y., Physica C 468, 1514 (2008)CrossRef
Kobayashi, H., Ishida, S., Takahashi, K., Konishi, M., Ibi, A., Miyata, S., Yamada, Y., Shiohara, Y., Kato, T., Hirayama, T., Physica C 445, 625 (2006)CrossRef
Mele, P., Matsumoto, K., Horide, T., Miura, O., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S., Physica C 426, 1108 (2005)CrossRef
Mele, P., Matsumoto, K., Horide, T., Miura, O., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S., Physica C 445–448, 648 (2006)CrossRef
Engel, S., Thersleff, T., Hühne, R., Schultz, L., Holzapfel, B., Appl. Phys. Lett. 90, 102505 (2007)CrossRef
Prijamboedi, B., Kashiwaya, S., J. Mater. Sci: Mater. Electron 17, 483 (2006)
Blatter, G., Feigelman, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M., Rev. Mod. Phys. 66, 1125 (1994)CrossRef
Shiohara, Y., Fujiwara, N., Hayashi, H., Nagaya, S., Izumi, T., Yoshizumi, M., Physica C 469, 863 (2009)CrossRef
Jha, A.K., Khare, N., J. Magn. Magn. Mater. 322, 2653 (2010)CrossRef
Abal’osheva, I., Abal’oshev, A., Gierlowski, P., Lewandowski, S.J., van der Beek, C.J., Indenbom, M.V., Konczykowski, M., Barbanera, S., Physica C 369, 240 (2010)CrossRef
Jha, A.K., Khare, N., Physica C 469, 810 (2009)CrossRef
Crisan, A., Mikheenko, P., Sarkar, A., Dang, V.S., Kechik, M.M.A., Abell, J.S., Paturi, P., Huhtinen, H., Physica C 470, 840 (2010)CrossRef
Murakami, M., Sakai, N., Higuchi, T., Yoo, S.I., Supercond. Sci. Technol. 9, 1015 (1996)CrossRef
Harada, N., Goto, Y., Yasuda, T., Tsuda, M., Hamajima, T., IEEE Trans. Appl. Supercond. 15, 3714 (2005)CrossRef
Cai, C.-B., Sun, Y., Gong, S.-M., Fu, Y.-X., Zhang, H., Physica C 282–287, 771 (1997)
Wee, S.H., Goyal, A., Martin, P.M., Heatherly, L., Supercond. Sci. Technol. 19, 865 (2006)CrossRef