Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T12:26:48.047Z Has data issue: false hasContentIssue false

Electrical model of the atmospheric pressure glow discharge (APGD) in helium

Published online by Cambridge University Press:  30 November 2005

I. Enache*
Affiliation:
Laboratoire de Génie Électrique de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
N. Naudé
Affiliation:
Laboratoire de Génie Électrique de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
J. P. Cambronne
Affiliation:
Laboratoire de Génie Électrique de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
N. Gherardi
Affiliation:
Laboratoire de Génie Électrique de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
F. Massines
Affiliation:
Laboratoire de Génie Électrique de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
Get access

Abstract

This work is a contribution to the understanding of mechanisms controlling the Atmospheric Pressure Glow Discharge (APGD). The approach consists in developing an electrical model of the discharge based on electrical circuit compounds. This model takes into account the main phenomena of the discharge including the memory effect and the creation of the cathode fall. It allows to have a general view of the process and can be easily associated to the power supply with short computational duration; it is also an interesting tool for the optimization of the whole process.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kogelschatz, U., Eliasson, B., Egli, W., Plasma Chem. Plasma P. 23, 1 (2003) CrossRef
Kanazawa, S., Kogoma, M., Moriwaki, T., Okazaki, S., J. Phys. D Appl. Phys. 21, 838 (1988) CrossRef
S. Kanazawa, M. Kogoma, S. Okazaki, T. Moriwaki, Nucl. Instrum. Meth. B 37, 38, 842 (1989)
Yokoyama, T., Kogoma, M., Moriwaki, T., Okazaki, S., J. Phys. D Appl. Phys. 23, 1125 (1990) CrossRef
F. Massines, P. Ségur, N. Gherardi, A. Ricard, Surf. Coat. Tech. 174; 175C, 8 (2003)
N. Gherardi, E. Gat, G. Gouda, F. Massines, 6th International Symposium on High Pressure, Low Temperature Plasma Chemistry (HAKONE VI), Aug. 31st – Sept. 2nd, 1998, Cork, Ireland
Massines, F., Rabehi, A., Decomps, P., Ben Gadri, R., Ségur, P., Mayoux, C., J. Phys. D Appl. Phys. 83, 2950 (1998) CrossRef
Okasaki, S., Kogoma, M., Uehara, M., Kimura, Y., J. Phys. D Appl. Phys. 26, 889 (1993) CrossRef
Trunec, D., Brablec, A., Buchta, J., J. Phys. D Appl. Phys. 34, 1697 (2001) CrossRef
N. Naudé, J.P. Cambronne, N. Gherardi, F. Massines, 10th European Conference on Power Electronics and Applications (EPE 2003), 2–4 Sept. 2003, Toulouse
Naudé, N., Cambronne, J.P., Gherardi, N., Massines, F., J. Phys. D Appl. Phys. 38, 530 (2005) CrossRef
Naudé, N., Cambronne, J.P., Gherardi, N., Massines, F., Eur. Phys. J. Appl. Phys. 29, 173 (2005) CrossRef