Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T11:43:27.762Z Has data issue: false hasContentIssue false

Effect of hydrogen implantation in 6H-SiC before and after thermal oxidation

Published online by Cambridge University Press:  21 July 2011

B. Arghavani Nia*
Affiliation:
Department of Physics, Islamic Azad University, Kermanshah Branch, Kermanshah, Iran
S. Solaymani
Affiliation:
Young Researchers Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
A. Ghaderi
Affiliation:
Department of Physics, Islamic Azad University, Tehran Central Branch, Tehran, Iran
D. Agha Aligol
Affiliation:
Van de Graaff Laboratory, Nuclear Science Research School, Ministry of Science, Research and Technology, Tehran, Iran
A. Baghizadeh
Affiliation:
Van de Graaff Laboratory, Nuclear Science Research School, Ministry of Science, Research and Technology, Tehran, Iran
Get access

Abstract

In this study, we propose new approach to study on hydrogen implantation into SiC crystalline structure and its effect on thermal oxidation. This paper has investigated on effects of hydrogen implantation into the surface structure of 6H-SiC crystal before and after thermal oxidation in oxygen ambient. H ions were implanted in SiC with dose of 1×1016 atoms/cm2 and energy of 15 keV. AFM results of implanted and non-implanted areas show that roughness in the implanted area is more than the non-implanted but, we could not observe any evidence of implanting effect in the nano scrapes which were created during polish process. Also, crystal quality, effect of H implantation and depth of maximum concentration were determined by RBS- Channeling. Moreover, it shows that the collision of H ions has affected on the SiC atoms. Distribution and dose of H ions were estimated by ERD technique. Furthermore, bonding between SiC atoms was investigated in implanted and non-implanted areas by FTIR technique. In addition, FTIR results in two areas show a significant difference between both areas before and after oxidation in oxygen ambient.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

P.A. lvanov, V.E. Chelnokov, Semicond. Sci. Technol. 7, 863 (1992) CrossRef
Hayton, D.J., Jenkins, T.E., Bailey, P., Noakes, T.C.Q., Semicond. Sci. Technol. 17, L29 (2002) CrossRef
T. Burke, K. Xie, J.R. Flemish, R. Singh, T. Podlesak, J.H. Zhao, Silicon Carbide Power Devices for High Temperature, High Power Density Switching Applications, in Proceedings of the Twenty-Second International Power Modulator Symposium (Boca Raton, FL, USA, 1996), pp. 18–21
Clarke, R.C., Palmour, J.W., Proc. IEEE 90, 987 (2002) CrossRef
Heliou, R., Brebner, J.L., Roorda, S., Semicond. Sci. Technol. 16, 836 (2002) CrossRef
Gregory, R., Wetteroth, T.A., R.S.Wilson, O.W. Holland, D.K. Thomas, Appl. Phys. Lett. 75, 2623 (1999) CrossRef
Radtke, C., Baumvol, I.J.R., Stedile, F.C., Phys. Rev. B 66, 155437 (2000) CrossRef
Makhtari, A., Raineri, V., La Via, F., Franz, G., Frisina, F., Calcagno, L., Mater. Sci. Semicond. Process. 4, 345 (2001) CrossRef
Palmieri, R., Boudinov, H., Radtke, C., da Silva Jr, E.F., Appl. Surf. Sci. 255, 706 (2008) CrossRef
Fisher, G.R., Barnes, P., Phil. Mag. 61, 217 (1990) CrossRef
R. Nipoti, M. Madrigali, A. Sambo, Mater. Sci. Eng. B 6162, 475 (1999)
Hosono, T., Hanamoto, K., U_eno, T., Kitabatake, I., Sasaki, M., Nakayama, Y., Nishino, S., Nucl. Instrum. Methods Phys. Res. B 149, 67 (1999) CrossRef
A. Shiryaev, A. van Veen, A. Rivera, M. van Huis, T. Bus, W.M. Arnoldbik, N. Tomozeiu, F.H.P.M. Habraken, R. Delamare, E. Ntsoenzok, Eur. Phys. J. Appl. Phys. Structural and Functional Materials, 116 (2002)
J.P. Biersack, J.F. Ziegler, The stopping and range of ions in solids (Pergamon Press, New York, 1985)
M. Mayer, SIMNRA User's Guide, Report IPP 9/113, Max-Planck-Institut für plasmaphysik, Garching, Germany, 1997
Dogan, S., Johnstone, D., Yun, F., Sabuktagin, S., Leach, J., Appl. Phys. Lett. 85, 154 (2004) CrossRef
Vickridge, I., Ganem, J., Hoshino, Y., Trimaille, I., J. Phys. D: Appl. Phys. 40, 6254 (2007) CrossRef
Hideki Hashimoto, Yasuto Hijikata, Hiroyuki, Yaguchi, Sadafumi Yoshida, Appl. Surf. Sci. 255, 8648 (2009)
Hossain, K., Holland, O.W., Naab, F.U., Mitchell, L.J., Poudel, P.R., Duggan, J.L., McDaniel, F.D., Nucl. Instrum. Methods Phys. Res. B 261, 620 (2007) CrossRef
Afanas'ev, V.V., Ciobanu, F., Dimitrijev, S., Pensl, G., Stesmans, A., J. Phys.: Condens. Matter 16, S1839 (2004)
Huisken, F., Kohn, B., Alexandrescu, R., Cojocaru, S., Crunteanu, A., Ledoux, G., Reynaud, C., Journal of Nanoparticles Research 1, 293 (1999) CrossRef