Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T15:31:01.725Z Has data issue: false hasContentIssue false

Dye stability of dye-sensitized solar cells with a conducting and a non-conducting electrode

Published online by Cambridge University Press:  25 January 2013

Yang Yu
Affiliation:
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
Kunjie Wu
Affiliation:
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
Kai Shen
Affiliation:
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
Deliang Wang*
Affiliation:
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China CAS Key Laboratory of Energy Conversion Materials, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
Get access

Abstract

Dye-sensitized solar cells with thin film TiO2 electrodes were fabricated. The TiO2 films were prepared on conducting and non-conducting glass substrates. A high-intensity laser was shining on the dye/TiO2 electrodes to excite the dyes and inject electrons to the conduction band of the TiO2 electrode. The dye degradation rate showed much difference for the dyes adsorbed on the TiO2 films on conducting and non-conducting glass substrates. On non-conducting glass substrate the injected electrons gathered near where they were injected. This increased the local Fermi level of the TiO2 conduction band and consequently the electron injection efficiency was decreased, leading to a relatively high degradation rate for the dyes when they were radiated by a high-intensity laser. The experimental results showed that dye stability is sensitive to the local electro-chemical environment.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O’Regan, B., Grätzel, M., Nature 353, 737 (1991)CrossRef
Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L.Y., Jpn J. Appl. Phys. Part 2 45, L638 (2006)CrossRef
Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., MUller, E., Liska, P., Vlachopoulos, N., Grätzel, M., J. Am. Chem. Soc. 115, 6382 (1993)CrossRef
Goetzberger, A., Hebling, C., Sol. Energy Mater. Sol. Cells 62, 1 (2000)CrossRef
Gratzel, M., C. R. Chim. 9, 578 (2006)CrossRef
Grunwald, R., Tributsch, H., J. Phys. Chem. B 101, 2564 (1997)CrossRef
Thomalla, M., Tributsch, H., C. R. Chim. 9, 659 (2006)CrossRef
Greijer, H., Lindgren, J., Hagfeldt, A., J. Phys. Chem. B 105, 6314 (2001)CrossRef
Wu, K.J., Shen, K., Liu, W.F., Wu, L.E., Wang, D.L., Phys. Status Solidi A 209, 1369 (2012)CrossRef
Wang, D., Wang, G., Zhao, J., Chen, B., Chin. Sci. Bull. 52, 2012 (2007)CrossRef
Wang, D.L., Zhang, X.Y., Wu, K.J., Xu, S.H., Chem. Lett. 35, 884 (2006)CrossRef
Yu, Y., Wu, K.J., Wang, D.L., Appl. Phys. Lett. 99, 192104 (2011)CrossRef
Shklover, V., Ovchinnikov, Y.E., Braginsky, L.S., Zakeeruddin, S.M., Grätzel, M., Chem. Mater. 10, 2533 (1998)CrossRef
Sasahara, A., Pang, C.L., Onishi, H., J. Phys. Chem. B 110, 4751 (2006)CrossRef
Strommen, D.P., Mallick, P.K., Danzer, G.D., Lumpkin, R.S., Kincaid, J.R., J. Phys. Chem. 94, 1357 (1990)CrossRef
Léon, C.P., Kador, L., Peng, B., Thelakkat, M., J. Phys. Chem. B 110, 8723 (2006)CrossRef
Kallioinen, J., Benkö, G., Myllyperkiö, P., Khriachtchev, L., Skarman, B., Wallenberg, R., Tuomikoski, M., Korppi-Tommola, J., Sundström, V., Yartsev, A.P., J. Phys. Chem. B 108, 6365 (2004)CrossRef
Junghänel, M., Tributsch, H., C. R. Chim. 9, 652, (2006)CrossRef
Green, A.N.M., Palomares, E., Haque, S.A., Kroon, J.M., Durrant, J.R., J. Phys. Chem. B 109, 12525 (2005)CrossRef
Peter, L.M., Duffy, N.W., Wang, R.L., Wijayantha, K.G.U., J. Electroanal. Chem. 524–525, 127 (2002)CrossRef
Snaith, H.J., Schmidt-Mende, L., Adv. Mat. 19, 3187 (2007)CrossRef
Kohle, O., Grätzel, M., Meyer, A.F., Meyer, T.B., Adv. Mat. 9, 904 (1997)CrossRef
Thavasi, V., Renugopalakrishnan, V., Jose, R., Ramakrishna, S., Mater. Sci. Eng. R 63, 81 (2009)CrossRef
O’Regan, B.C., Durrant, J.R., Sommeling, P.M., Bakker, N.J., J. Phys. Chem. C 111, 14001 (2007)CrossRef
Uam, H.S., Jung, Y.S., Jun, Y., Kim, K.J., J. Photochem. Photobiol. A Chem. 212, 122 (2010)CrossRef