Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T21:25:04.718Z Has data issue: false hasContentIssue false

Dielectric properties of (Ba0.67Sr0.33)TiO3 thin film for uncooled infrared focal plane arrays

Published online by Cambridge University Press:  12 September 2002

S. J. Liu*
Affiliation:
Department of Electronics Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
C. Y. Xu
Affiliation:
Department of Electronics Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
X. B. Zeng
Affiliation:
Department of Electronics Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
B. F. Zhao
Affiliation:
Department of Electronics Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
Get access

Abstract

The (Ba0.67Sr0.33)TiO3 thin film for dielectric bolometer mode of uncooled infrared focal plane arrays prepared on Pt/Ti/SiO2/Si by radio-frequency magnetron sputtering has been investigated focusing on the dielectric properties. X-ray diffractometer shows the BST films to be well perovskite structure. These films exhibit good surface morphology. The dielectric properties of the BST thin films have been measured as a function of temperature using a HP4284A LCR meter. According to the dielectric constant-temperature curve, the Curie temperature of the BST thin film is about 30 °C, around room temperature. The maximum change in the dielectric constant is as large as 78/k, and more than 21% relative change in the dielectric constant has been obtained.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Watton, R., Ferroelectrics 91, 87 (1989) CrossRef
Hanson, C., Beratan, H., Owen, R. et al., SPIE Infrared Detecors: State of the Art 17, 1735 (1992)
R. Watton. Integr. Ferroelectr. 4, 175 (1994)
Choi, J.R., Lee, D.H., Nam, H.J., et al., Integr. Ferroelectr. 6, 251 (1995) CrossRef
Whatmore, R.W., Osbond, P.C., Shorrocks, N.M., Ferroelectrics 76, 351 (1987) CrossRef
Chu, C.M., Lin, P., Appl. Phys. Lett. 70, 249 (1997) CrossRef
Cheng, J., Tang, J., Chu, J., et al., Appl. Phys. Lett. 77, 1035 (2000) CrossRef
Yoon, S., Lee, J., Safari, A., J. Appl. Phys. 76, 2999 (1994) CrossRef
Chern, C.S., Liang, S., Shi, Z., et al., Appl. Phys. Lett. 64, 3181 (1994) CrossRef
Tahan, D.M., Safari, A., Klein, L., J. Am. Ceram. Soc. 79, 1593 (1996) CrossRef
J.A. Thornton, A.S. Penfold, in Thin Film Processes (Academic press, New York, 1978), p. 107
Geerk, J., Linker, G., Meyer, O., et al., Proc. SPIE 1597, 147 (1991) CrossRef
Fukuda, Y., Haneda, H., Sakaguchi, I., et al., Jpn. J. Appl. Phys. 36, 1514 (1997) CrossRef
Liu, S.J., Xu, C., Zeng, X., Electron. Compon. Mater. 4, 5 (2001)
W. Zhong, The physics of ferroelectrics (Science Press, Beijing, 1996)
Noda, M., Hashimoto, K., Kubo, R., et al., Sens. and Actuators 77, 39 (1999) CrossRef
Neurgaonkar, R.R., Cory, W.K., Oliver, J.R., Proc. SPIE 540, 146 (1985) CrossRef
Xu, H., Zhu, H., Hashimoto, K., et al., Vacuum 59, 628 (2000) CrossRef
Hashimoto, K., Xu, H., Mukaigawa, T., et al., Sens. and Actuators A 88, 10 (2001) CrossRef