Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T10:54:59.952Z Has data issue: false hasContentIssue false

Determination of the diffusion length and the optical self absorption coefficient using EBIC model

Published online by Cambridge University Press:  15 October 2001

S. Guermazi*
Affiliation:
Département de Physique, Institut Préparatoire aux Études d'Ingénieurs de Sfax, Tunisia
H. Guermazi
Affiliation:
Département de Physique, Institut Préparatoire aux Études d'Ingénieurs de Sfax, Tunisia
Y. Mlik
Affiliation:
Département de Physique, Institut Préparatoire aux Études d'Ingénieurs de Sfax, Tunisia
B. El Jani
Affiliation:
Laboratoire de Physique des Matériaux, Faculté des Sciences de Monastir, Tunisia
C. Grill
Affiliation:
Laboratoire de Microscopie Électronique, Université Montpellier 2, place Eugène Bataillon, 34000 Montpellier, France
A. Toureille
Affiliation:
Laboratoire d'Électrotechnique, Université Montpellier 2, place Eugène Bataillon, 34000 Montpellier, France
Get access

Abstract

We have developed a model of calculation of the induced current due to an electron beam. The expression for the electron beam induced current (EBIC) with an extended generation profile is obtained via the resolution of a steady state continuity equation by the Green function method, satisfying appropriated boundary conditions to the physical model. The generation profile takes into account the lateral diffusion, the effect of defects, dislocations and recombination surfaces besides the number of absorbed electrons and that of diffuse electrons as a function of the depth. In the case of a Schottky diode Au/GaAs obtained by metalorganic vapour phase epitaxy (MOVPE) method, the theoretical induced current profile is compared to the experimental one and to theoretical profiles whose analytical expressions are given by van Roosbroeck and Bresse. The minority carriers diffusion length Ln = 2 µm and the optical self-absorption coefficient a = 0.034 µm−1 can be deduced from the experimental current profile, measured by scanning electron microscopy. The theoretical curve, obtained from the proposed model is in a good agreement with the experimental one for surface recombination velocity 106 cm s−1 except for distances far from the depletion layer (x0 > 2.3 µm) where the photocurrent produced by the multiple process of the reabsorbed recombination radiation is preponderant. Our results are in agreement with those obtained by other experimental techniques on the same samples.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

van Roosbroeck, W., J. Appl. Phys. 26, 380 (1955). CrossRef
Bresse, J.F., J. Microsc. Spectrosc. Electrons 6, 17 (1981).
Wittry, D.B., Kyser, D.F., J. Appl. Phys. 36, 1387 (1965). CrossRef
Higuchi, H., Tamura, H., Jpn. J. Appl. Phys. 4, 316 (1965). CrossRef
Czaja, W., J. Appl. Phys. 37, 4236 (1966). CrossRef
Lengyel, G., Solid-State Electron. 17, 510 (1974). CrossRef
Leamy, H.J., J. Appl. Phys. 53, R51-R80 (1982). CrossRef
Berz, F., Kuiken, H.K., Solid-State Electron. 19, 437 (1976). CrossRef
Donolato, C., Solid-State Electron. 25, 1077 (1982). CrossRef
Von Roos, O., Solid-State Electron. 21, 1063 (1978). CrossRef
Akamatsu, B., Henoc, J., Henoc, P., J. Appl. Phys. 52, 7245 (1981). CrossRef
Farvacque, J.L., Sieber, B., Rev. Phys. Appl. 25, 353 (1990). CrossRef
Daniel, S.H., Kin Leong Pey, Jacob C.H. Phang, IEEE Trans. Electron Devices 40, 1417 (1993).
Ong, V.K.S., Phang, J.C.H., Chan, D.S.H., Solid-State Electron. 37, 1 (1994). CrossRef
Guermazi, S., Toureille, A., Grill, C., El Jani, B., Lakhoua, N., J. Phys. III France 6, 481 (1996). CrossRef
Guermazi, S., Toureille, A., Grill, C., El Jani, B., Eur. Phys. J. AP 9, 43 (2000). CrossRef
W. Bothe, Silzungsber Heideberger A, Kad 7, Abhandlung, 307 (1951).
Kanaya, K., Okayama, S., J. Phys. D Appl. Phys. 5, 43 (1972). CrossRef
P.H. Morse, H. Feshbach, Methods of theoretical physics (New York, Toronto-London, 1953), Chap. 7, Part I.
Jensen, B., J. Appl. Phys. 50, 5800 (1979). CrossRef
Zarem, H.A., Sercel, P.C., Lens, J.A., Eng, L.E., Yariv, A., Vahala, K.J., Appl. Phys. Lett. 55, 1647 (1989). CrossRef
Herlmann, R., Delgart, G., Mitdank, R., Jacobs, B., Phys. Stat. Sol. A 123, 539 (1991). CrossRef
Pavesi, L., Guzzi, M., J. Appl. Phys. 75, 4779 (1994). CrossRef