Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T02:17:37.887Z Has data issue: false hasContentIssue false

A detailed discussion of the N2(C 3Πu) and N2(X 1Σg+) vibrational temperatures in N2 glow discharges

Published online by Cambridge University Press:  04 March 2004

J. Levaton
Affiliation:
Laboratório Interdisciplinar de Materials (LABMAT), Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Brazil Centre de Physique des Plasmas et leurs Applications (CPAT), Université Paul Sabatier, 31062 Toulouse Cedex, France
J. Amorim
Affiliation:
Laboratório Interdisciplinar de Materials (LABMAT), Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Brazil Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, 12228-900, São José dos Campos, Brazil
V. Monna
Affiliation:
Centre de Physique des Plasmas et leurs Applications (CPAT), Université Paul Sabatier, 31062 Toulouse Cedex, France
J. Nagai
Affiliation:
Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, 12228-900, São José dos Campos, Brazil
A. Ricard*
Affiliation:
Centre de Physique des Plasmas et leurs Applications (CPAT), Université Paul Sabatier, 31062 Toulouse Cedex, France
Get access

Abstract

A N2 direct current discharge was studied by optical emission spectroscopy. Experimental parameters as gas flow rate (Q), pressure (p) and current (I) were varied independently, covering the following range: 10 < I < 75 mA, 100 < Q < 1000 sccm and 1.7 < p < 10 torr, corresponding to the following plasma parameters: electron density in the range 109−1012 cm−3 and reduced electric field between 3×10−16 and 10−15 V cm−2. The N2(C $^{3}{\rm \Pi} _{\rm u},\,v'$), N2(X $^{1}{\rm \Sigma} ^{+}_{\rm g}, \,v$) vibrational temperatures and the gas temperature were obtained from the first and second positive systems emissions. The N2(C $^{3}{\rm \Pi} _{\rm u},\,v'$) vibrational distributions did not exhibit a Boltzmann character. A linearization process was employed to such distributions allowing us to calculate the N2(C $^{3}{\rm \Pi} _{\rm u},\,v'$) temperature. The N2(X $^{1}{\rm \Sigma} ^{+}_{\rm g},\,v$) temperature was calculated from the N2(C $^{3}{\rm \Pi} _{\rm u},\,v'$) one on the basis of the Franck-Condon factors. Results and the method of vibrational temperature calculus are presented.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Capitelli, in Topics in Current Physics: Nonequilibrium Vibrational Kinetics, 1st edn. (Springer-Verlag, Berlin, 1986)
G. Herzberg, in Molecular spectra and molecular structure, Diatomic molecules (Van Nostrand, Princeton, 1950), Vol. 1
Loureiro, J., Ferreira, C.M., J. Phys. D 19, 17 (1986) CrossRef
L. Hochard, ESCAMPIG 108E , 336 (1994)
De Benedictis, S., Dilecce, G., Chem. Phys. 192, 149 (1995) CrossRef
Piper, L.G., J. Chem. Phys. 88, 231 (1988) CrossRef
Loureiro, J., , P.A., Guerra, V., J. Phys. D: Appl. Phys. 34, 1769 (2001) CrossRef
Levaton, J., Amorim, J., Souza, A.R., Franco, D., Ricard, A., J. Phys. D: Appl. Phys. 35, 689 (2002) CrossRef
V. Kiohara, J. Levaton, J. Amorim, Measurements of N(2 D) density in nitrogen afterglow, ISPC Taormina, Italy, June 2003
Massabieaux, B., Gousset, G., Lefbvre, M., Pealat, M., J. Phys. 47, 1939 (1987) CrossRef
Loureiro, J., Ricard, A., J. Phys. D 26, 163 (1993) CrossRef
Macko, P., Cunge, G., Sadeghi, N., J. Phys. D 34, 1807 (2001) CrossRef