Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T16:11:14.671Z Has data issue: false hasContentIssue false

Crack detection by stimulated infrared thermography

Published online by Cambridge University Press:  07 March 2014

Jean-Luc Bodnar*
Affiliation:
GRESPI/ECATHERM, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, France
Get access

Abstract

In this paper, the potential of stimulated infrared thermography is studied for the detection of cracks located in metallic materials. To start with, the feasibility of the method is shown with the use of numerical simulations. Stimulated infrared thermography allows detecting emerging cracks in samples whether reflective or not as well as non-emerging cracks. In addition, crack detection is due to the radiative effects and/or the thermal effects induced by the defects. Then, the experimental device implemented for the study is detailed. Finally, experiments confirm that stimulated infrared thermography enables to detect microscopic cracks, whether emerging or non-emerging, in metal samples.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dumont-Fillon, J., Contrôle non destructif, Techniques de l’ingénieur, traité contrôle non destructif (T.I. Edition, 2013), R1400, pp. 954Google Scholar
Cherfaoui, M., Essais non destructifs, Techniques de l’ingénieur, traité contrôle non destructif (T.I. Edition, 2013), R1400, p. 5568Google Scholar
Joseph, C., L’observation et le mesurage par thermographie infrarouge (AFNOR Edition, 1991)Google Scholar
Caniou, J., Passive Infrared Detection (Kluwer Academic Publishers, Boston, 1999)CrossRefGoogle Scholar
Gaussorgues, G., La Thermographie Infrarouge: Principes, Technologies, Applications (Lavoisier, Paris, 1984)Google Scholar
Maldague, X., Theory and Practice of Infrared Technology for non Destructive Testing (Wiley, New York, 2001)Google Scholar
Mandelis, A., Progress in Photothermal and Photoacoustic Sciences and Technology (SPIE, Washington, 1997)Google Scholar
Pajani, D., Mesure par thermographie infrarouge (ADD, 1989)Google Scholar
Papini, F., Gallet, P., Thermographie Infrarouge: Images et Mesure (Masson, 1997)Google Scholar
Vavilov, V.P., Non Destructive Testing Handbook: Thermal/Infrared Testing (V.V. Klyuev, 2009)Google Scholar
Candoré, J.C., Bodnar, J.J., Detalle, V., Grossel, P., Eur. Phys. J. Appl. Phys. 57, 21002 (2012)CrossRef
Candoré, J.C., Bodnar, J.L., Detalle, V., Grossel, P., Eur. Phys. J. Appl. Phys. 57, 11002 (2012)CrossRef
Bodnar, J.L., Candoré, J.C., Nicolas, J.L., Szatanik, G., Detalle, V., Vallet, J.M., Stimulated Infrared Thermography Applied to Help Restoring Mural Paintings (Elsevier, 2012), pp. 4046Google Scholar
Maillard, S., Cadith, J., Bouteille, P., Legros, G., Bodnar, J.L., Detalle, V., Int. J. Thermophys. 33, 1982 (2012)
Bodnar, J.L., Nicolas, J.L., Candoré, J.C., Detalle, V., Int. J. Thermophys. 33, 2011 (2012)CrossRef
Bodnar, J.L., Mouhoubi, K., Szatanik-Perrier, G., Vallet, J.M., Detalle, V., Int. J. Thermophys. 33, 1996 (2012)CrossRef
Bodnar, J.L., Brahim, S., Grossel, P., Detalle, V., Int. J. Thermophys. 33, 1976 (2012)CrossRef
Siegel, R., Howell, J.R., Thermal Radiation Heat Transfer (Taylor & Francis, NY, 2010)Google Scholar