Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T21:02:35.344Z Has data issue: false hasContentIssue false

Copper nanocones grown in polymer ion-track membranes as field emitters

Published online by Cambridge University Press:  23 March 2012

P. Serbun*
Affiliation:
FB C Physics Department, University of Wuppertal, 42097 Wuppertal, Germany
F. Jordan
Affiliation:
FB C Physics Department, University of Wuppertal, 42097 Wuppertal, Germany
A. Navitski
Affiliation:
FB C Physics Department, University of Wuppertal, 42097 Wuppertal, Germany
G. Müller
Affiliation:
FB C Physics Department, University of Wuppertal, 42097 Wuppertal, Germany
I. Alber
Affiliation:
Materials Research, GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt, Germany
M.E. Toimil-Molares
Affiliation:
Materials Research, GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt, Germany
C. Trautmann
Affiliation:
Materials Research, GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt, Germany
Get access

Abstract

Field emission (FE) properties of unstructured and patch-structured cathodes with randomly distributed and vertically aligned copper nanocones (Cu-NCs) are reported. The cones of ~28 μm height, 2.4 μm base diameter and 95–220 nm tip radius were fabricated by electrochemical deposition of Cu into conical channels of heavy-ion-irradiated and asymmetrically etched polycarbonate membranes. FE measurements of the unstructured cathodes with slowly-grown Cu-NCs of high number density (107 cm−2) and excellent mechanical stability yield stable currents up to 280 μA from an emission spot of 30 μm. For the structured cathodes with a triangular patch array of less dense Cu-NCs (<106 cm−2), well-aligned FE with ~90% efficiency is reproducibly achieved. A trade-off between low onset field (~22 V/μm) for sparsely grown Cu-NCs with sharp tips and high current limit (~100 μA) for densely grown ones with broader tips is observed. Possibilities for further optimization of such field emitters for cold cathode applications are discussed.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xu, N.S., Huq, S.E., Mater. Sci. Eng. R 48, 47 (2005)CrossRef
Saito, Y. (ed.), Carbon Nanotubes and Related Field Emitters (Wiley-VCH, Weinheim, 2010)CrossRefGoogle Scholar
Ding, F., Bolton, K., Rosen, A., J. Electron. Mater. 35, 207 (2006)CrossRef
Nilsson, L.O., Groening, O., Emmenegger, C., Kuettel, O., Schaller, E., Schlapbach, L., Kind, H., Bonard, J.M., Kern, K., Appl. Phys. Lett. 76, 2071 (2000)CrossRef
Bonard, J.M., Weiss, N., Kind, H., Stockli, T., Forro, L., Kern, K., Chatelain, A., Adv. Mat. 13, 184 (2001)3.0.CO;2-I>CrossRef
Collins, P.G., Bradley, K., Ishigami, M., Zettl, A., Science 287, 1801 (2000)CrossRef
Bonard, J.M., Kind, H., Stöckli, T., Nilson, L.O., Solid-State Electron. 45, 893 (2001)CrossRef
Toimil-Molares, M.E., Brötz, J., Buschmann, V., Dobrev, D., Neumann, R., Scholz, R., Schuchert, I.U., Trautmann, C., Vetter, J., Nucl. Instr. Methods Phys. Res. B 185, 192 (2001)CrossRef
Vila, L., Vincent, P., de Pra, L.D., Pirio, G., Minoux, E., Gangloff, L., Demoustier-Champagne, S., Sarazin, N., Ferain, E., Lagras, R., Nano Lett. 4, 521 (2004)CrossRef
Liu, J., Duan, J.L., Toimil-Molares, M.E., Karim, S., Cornelius, T.W., Dobrev, D., Yao, H.J., Sun, Y.M., Hou, M.D., Wang, Z.G., Neumann, R., Nanotechnology 17, 1922 (2006)CrossRef
Maurer, F., Dangwal, A., Lysenkov, D., Müller, G., Toimil-Molares, M.E., Trautmann, C., Brötz, J., Fuess, H., Nucl. Instr. Methods Phys. Res. B 245, 337 (2006).CrossRef
Dangwal, A., Müller, G., Maurer, F., Brötz, J., Fuess, H., J. Vac. Sci. Technol. B 25, 586 (2007)CrossRef
Dangwal, A., Pandey, C.S., Müller, G., Karim, S., Cornelius, T.W., Trautmann, C., Appl. Phys. Lett. 92, 063115 (2008)CrossRef
Karim, S., Toimil-Molares, M.E., Ensinger, W., Balogh, A.G., Cornelius, T.W., Khan, E.U., Neumann, R., J. Phys. D: Appl. Phys. 40, 3767 (2007)CrossRef
Navitski, A., Müller, G., Sakharuk, V., Cornelius, T., Trautmann, C., Karim, S., Eur. Phys. J. Appl. Phys. 48, 30502 (2009)CrossRef
Navitski, A., Serbun, P., Müller, G., Alber, I., Toimil-Molares, M.E., Trautmann, C., GSI Scientific Report, PNI-MR-36, 404 (2010)
Navitski, A., Serbun, P., Müller, G., Alber, I., Toimil-Molares, M.E., Trautmann, C., in Book of abstracts of 23rd Int. Vacuum Nanoelectronics Conf., IEEE Cat. No. CFP10VAC-PRT, 2010, p. 163
Dobrev, D., Vetter, J., Neumann, R., Angert, N., J. Vac. Sci. Technol. B 19, 1385 (2001)CrossRef
Duan, J.L., Liu, J., Cornelius, T.W., Pitcht, O., Rauber, M., Trautmann, C., Neumann, R., GSI Scientific Report 2008, Materials-23, 355 (2008)
Lysenkov, D., Müller, G., Int. J. Nanotechnol. 2, 239 (2005)CrossRef
Appel, P., Korchev, Y.E., Siwy, Z., Spohr, R., Yoshida, M., Nucl. Instr. Methods Phys. Res. B 184, 337 (2001)CrossRef