Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-13T15:19:04.100Z Has data issue: false hasContentIssue false

Comparison between conventional and hollow cathode magnetron sputtering systems on the growing of titanium dioxide thin films: a correlation between the gas discharge and film formation

Published online by Cambridge University Press:  18 May 2011

D. A. Duarte*
Affiliation:
Technological Institute of Aeronautics, Department of Physics, Plasma Science and Technology Laboratory, 12228-900, São José dos Campos, SP, Brazil
M. Massi
Affiliation:
Technological Institute of Aeronautics, Department of Physics, Plasma Science and Technology Laboratory, 12228-900, São José dos Campos, SP, Brazil
A.S. da Silva Sobrinho
Affiliation:
Technological Institute of Aeronautics, Department of Physics, Plasma Science and Technology Laboratory, 12228-900, São José dos Campos, SP, Brazil
*
Get access

Abstract

This paper reports the deposition of titanium dioxide thin films on p-type Si(100) substrates using two techniques called conventional magnetron sputtering (CMS) and hollow cathode magnetron sputtering (HCMS). The influence of the plasma parameters on the film characteristics (topography, morphology and crystallinity) was investigated. Films were deposited at different oxygen concentrations (in the Ar + O2 gas mixture) and axial distances for fixed values of working pressure (5.0 mTorr) and DC power (55 W). They were analyzed by profilometry, AFM and XRD. The gas discharge was diagnosed by single Langmuir probe and OES. Under experimental conditions used in this work, results show that HCMS favors the growing of rutile phase due to the increase of the energy on the film surface caused by the hollow cathode effect. On the other hand, films deposited by CMS present preferentially anatase phase due to the low energy transferred to the growing film. Further studies regarding the influence of plasma properties on the films formation were done in order to understand the plasma-surface correlation.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, Z., Cohen, S.A., J. Vac. Sci. Technol. A 17, 77 (1999) CrossRef
Rossnagel, S.M., Kaufman, H.R., J. Vac. Sci. Technol. A 6, 223 (1988) CrossRef
Iseki, T., Vacuum 84, 339 (2010) CrossRef
Richter, F., Welzel, T., Kleinhempel, R., Dunger, T., Knoth, T., Dimer, M., Milde, F., Surf. Coat. Technol. 204, 845 (2009) CrossRef
Bräuer, G., Szyszka, B., Vergöhl, M., Bandorf, R., Vacuum 84, 1354 (2010) CrossRef
Cuomo, J.J., Rossnagel, S.M., J. Vac. Sci. Technol. A 4, 393 (1986) CrossRef
Duarte, D.A., Massi, M., da Silva Sobrinho, A.S., Maciel, H.S., Grigorov, K., Fontana, L.C., Eur. Phys. J. Appl. Phys. 49, 13107 (2010) CrossRef
Arumainayagam, C.R., Lee, H.-L., Nelson, R.B., Haines, D.R., Gunawardane, R.P., Surf. Sci. Rep. 65, 1 (2010) CrossRef
Albertin, K.F., Pereyra, I., Thin Solid Films 517, 4548 (2009) CrossRef
Grätzel, M., J. Photochem. Photobiol. C: Photochem. Rev. 4, 145 (2003) CrossRef
Wang, Z., Cohen, S.A., Phys. Plasmas 5, 1655 (1999) CrossRef
Window, B., Savvides, N., J. Vac. Sci. Technol. A 4, 196 (1986) CrossRef
Straňák, V., Blažek, J., Adámek, P., Hubička, Z., Tichý, M., Špatenka, P., Hippler, R., Contrib. Plasmas Phys. 48, 503 (2008) CrossRef
Musil, J., Kadlec, S., Vacuum 40, 435 (1990) CrossRef
Karuppasamy, A., Subrahmanyam, A.J., J. Appl. Phys. 101, 064318 (2007) CrossRef
Zhou, W., Zhong, X., Wu, X., Yuan, L., Shu, Q., Li, W., Xia, Y., J. Phys. D: Appl. Phys. 40, 219 (2007) CrossRef
Toku, H., Pessoa, R.S., Maciel, H.S., Massi, M., Mengui, U.A., Surf. Coat. Technol. 202, 2126 (2008) CrossRef
Hellgren, N., Macák, K., Broitman, E., Johansson, M.P., Hultman, L., Sundgren, J.-E., J. Appl. Phys. 88, 530 (2000)
Diebold, U., Surf. Sci. Rep. 48, 84 (2003) CrossRef
Barnes, M.C., Gerson, A.R., Kumar, S., Hwang, N.-M., Thin Solid Films 446, 29 (2004) CrossRef
Barnes, M.C., Kumar, S., Green, L., Hwang, N.-M., Gerson, A.R., Surf. Coat. Technol. 190, 321 (2005) CrossRef
Löbl, P., Huppertz, M., Mergel, D., Thin Solid Films 251, 75 (1994) CrossRef
Yamagishi, M., Kuriki, S., Song, P.K., Shigesato, Y., Thin Solid Films 442, 227 (2003) CrossRef
Suhail, M.H., Rao, G.M., Mohan, S., J. Appl. Phys. 71, 1421 (1992) CrossRef
Engström, C., Berling, T., Birch, J., Hultman, L., Ivanov, I.P., Kirkpatrick, S. R., Rohde, S., Vacuum 56, 112 (2000)
Ranade, M.R., Navrotsky, A., Zhang, H.Z., Banfield, J.F., Elder, S.H., Zaban, A., Borse, P.H., Kulkarni, S.K., Doran, G.S., Whitfield, H.J., PNAS 99, 6476 (2002) CrossRef
Song, P.K., Irie, Y., Shigesato, Y., Thin Solid Films 496, 123 (2006) CrossRef
Mattox, D.M., J. Vac. Sci. Technol. A 7, 1105 (1989) CrossRef
Schiller, S., Heisig, U., Steinfelder, K., Strumpfel, J., Thin Solid Films 63, 369 (1979) CrossRef