Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T14:19:08.623Z Has data issue: false hasContentIssue false

A compact model of subthreshold characteristics for short channel double-gate junctionless field effect transistors

Published online by Cambridge University Press:  03 March 2014

Xiaoshi Jin*
Affiliation:
School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, P.R. China
Xi Liu
Affiliation:
School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, P.R. China
Rongyan Chuai
Affiliation:
School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, P.R. China
Jung-Hee Lee
Affiliation:
School of Electronics Engineering, Kyungpook National University, 1370 Sangyuk-Dong Buk-Gu, Daegu 702-701, Korea
Jong-Ho Lee
Affiliation:
School of EECS Engineering and ISRC (Inter-University Semiconductor Research Center), Seoul National University, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, Korea
*
ae-mail: xsjin@live.cn
Get access

Abstract

A compact subthreshold characteristics model for short channel fully-depleted double-gate (DG) junctionless field effect transistors (JL FETs) which is based on an approximated solution of 2 dimensional Poisson’s equation has been proposed. The derivation details are introduced and the model’s accuracy has been verified by comparison with both previous models and the TCAD simulations’ results which proves that the subthreshold characteristics such as channel potential distribution, subthrethold drain-to-source current, subthreshold slope, drain-induced-barrier-lowering and threshold voltage can be accurately predicted by our proposed compact model.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.P., Appl. Phys. Lett. 94, 053511 (2009)CrossRef
Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, A., White, M., Kelleher, A.M., McCarthy, B., Murphy, R., Nat. Nanotechnol. 5, 225 (2010)CrossRef
Lee, C.W., Borne, A., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P., IEEE Trans. Electron Devices 57, 620 (2010)CrossRef
Colinge, J.P., Lederer, D., Afzalian, A., Yan, R., Lee, C.W., Akhavan, N.D., Xiong, W., Jpn J. Appl. Phys. 48, 034502 (2009)CrossRef
Ansari, L., Feldman, B., Fagas, G., Colinge, J.P., Greer, J.C., Solid-State Electron. 71, 58 (2012)CrossRef
Park, C.H., Ko, M.D., Kim, K.H., Baek, R.H., Sohn, C.W., Baek, C.K., Park, S., Deen, M.J., Jeong, Y.H., Lee, J.S., Solid-State Electron. 73, 7 (2012)CrossRef
Sallese, J.M., Chévillon, N., Lallement, C., Iñiguez, B., Pregaldiny, F., IEEE Trans. Electron Devices 58, 2628 (2011)CrossRef
Duarte, J.P., Choi, S.J., Moon, D.I., Choi, Y.K., IEEE Electron Device Lett. 32, 704 (2011)CrossRef
Duarte, J.P., Choi, S.J., Choi, Y.K., IEEE Trans. Electron Devices 58, 4219 (2011)CrossRef
Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G., IEEE Trans. Electron Devices 58, 2903 (2011)CrossRef
Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G., IEEE Trans. Electron Devices 59, 941 (2012)CrossRef
Jin, X., Liu, X., Wu, M., Chuai, R., Lee, J.-H., Lee, J.-H., J. Phys. D 45, 375102 (2012)CrossRef
Jazaeri, F., Barbut, L., Koukab, A., Sallese, J.-M., Solid-State Electron. 82, 103 (2013)CrossRef
SILVACO International, (2007) ATLAS User’s Manual http://www.silvaco.com/products/device_simulation/ atlas.html
Liang, X., Taur, Y., IEEE Trans. Electron Devices 51, 1385 (2004)CrossRef
Tsormpatzoglou, A., Dimitriadis, C.-A., Clerc, R., Pananakakis, G., Ghibaudo, G., IEEE Trans. Electron Devices 55, 2512 (2008)CrossRef