Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T22:56:48.891Z Has data issue: false hasContentIssue false

Chemical bond approach to optical properties of some flash evaporated Se100XSbX chalcogenide alloys

Published online by Cambridge University Press:  11 July 2012

C.M. Muiva
Affiliation:
Department of Physics, University of Botswana, P/Bag UB-0022 Gaborone, Botswana African Materials Science and Engineering Network (AMSEN), a Carnegie IAS-RISE Network, UB-Node, P/Bag UB-0022, Gaborone, Botswana
T.S. Sathiaraj*
Affiliation:
Department of Physics, University of Botswana, P/Bag UB-0022 Gaborone, Botswana African Materials Science and Engineering Network (AMSEN), a Carnegie IAS-RISE Network, UB-Node, P/Bag UB-0022, Gaborone, Botswana
J.M. Mwabora
Affiliation:
Department of Physics, University of Nairobi, PO Box 30197-00100 Nairobi, Kenya African Materials Science and Engineering Network (AMSEN), a Carnegie IAS-RISE Network, UB-Node, P/Bag UB-0022, Gaborone, Botswana
Get access

Abstract

Amorphous thin films of Se100 − XSbX (X = 1, 5, 10, 15 and 20) were synthesized by flash evaporation of the premelt quenched bulk samples. The optical properties were investigated from spectrophotometric measurements in the UV-VIS-NIR spectral region using Swanepoel’s standard envelope method and related techniques. The optical band gap energy (Egopt) was evaluated from the Wemple-Didomenico (WDD) single oscillator model and Tauc’s extrapolation method in the region where the absorption coefficient, α ≥ 104 cm–1. The observed values of Egopt and oscillator energy Eo were found to decrease monotonously with increasing Sb additive. The complex dielectric constant (ε), Urbach energy (Eu), optical conductivity (σ), plasma frequency (ωp) and lattice dielectric constant (εL) were deduced for each alloy composition. The complex refractive index (n) fitted well to Sellmeier function which can allow extrapolation of n outside the measured spectral range. The observed changes in optical parameters with Sb content were explained on the basis of increased defect states and changes in cohesive energy indicators (average heat of atomization (Hs), mean coordination number 〈Z〉 and average single bond energy (Hs/〈Z〉).

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

El-Sayed, S.M., Amin, G.A.M., Vacuum 62, 353 (2001)CrossRef
Srivastava, S., Mehta, N., Tiwari, R.S., Shukla, R.K., Kumar, A., J. Optoelectron. Adv. Mater. 13, 13 (2011)
Mehta, N., Zulfequar, M., Kumar, A., Phys. Status Solidi A 203, 236 (2005)CrossRef
EL-Wahabb, E.A., Fouad, S.S., Fadel, M., J. Mater. Sci. 38, 527 (2003)CrossRef
Fouad, S.S., Ammar, A.H., Phys. B: Condens. Matter 229, 249 (1997)CrossRef
Mikla, V.I., Mikla, V.V., Metastable States in Amorphous Chalcogenide Semiconductors (Springer-Verlag, Berlin, 2010), p. 101CrossRefGoogle Scholar
Kang, M.J., Park, T.J., Wamwangi, D., Wang, K., Steimer, C., Choi, S.Y., Wuttig, M., Microsys. Technol. 13, 153 (2007)CrossRef
Pandey, V., Tripathi, S.K., Kumar, A., Phys. B: Condens. Matter 388, 200 (2007)CrossRef
Soltan, A.S., J. Appl. Phys. A 80, 117 (2005)CrossRef
Tintu, R., Nampoori, V.P.N., Radhakrishnan, P., Thomas, S., J. Phys. D: Appl. Phys. 44, 025101 (2011)CrossRef
Othman, A.A., Thin Solid Films 515, 1634 (2006)CrossRef
Muiva, C.M., Sathiaraj, T.S., Mwabora, J.M., J. Non-Cryst. Solids 357, 3726 (2011)CrossRef
Lucovsky, G., Phys. Rev. B 15, 572 (1970)
Tauc, J., in Amorphous and Liquid Semiconductors, edited by Tauc, J. (Plenum Press, London and New York, 1974)CrossRefGoogle Scholar
Wood, D.L., Tauc, J., J. Phys. Rev. B 5, 3144 (1972)CrossRef
Shimakawa, K., J. Non-Cryst. Solids 43, 229 (1981)CrossRef
El-Kabany, N., Vacuum 85, 5 (2010)CrossRef
Majeed Khan, M.A., Khan, M.W., J. Alloys Compd. 486, 876 (2009)CrossRef
Mott, N.F., Davis, E.A., Electronic Process in Non-Crystalline Materials (Clarendon Press, Oxford, 1971), p. 210Google Scholar
Fadel, M., J. Alloys Compd. 485, 604 (2009)CrossRef
Urbach, F., Phys. Rev. 92, 1324 (1953)CrossRef
Ammar, A.H., Abdel-Moniem, N.M., Farag, A.A.M., El-Sayed, M., Phys. B: Condens. Matter 407, 356 (2012)CrossRef
Swanepoel, R., J. Phys. E: Sci. Instr. 17, 896 (1984)CrossRef
Magnificier, J.C., Gasiot, J., Fillard, J.P., J. Phys. E: Sci. Instr. 9, 1002 (1976)CrossRef
Sharma, I., Tripathi, S.K., Barman, P.B., Appl. Surf. Sci. 255, 2791 (2008)CrossRef
Ghosh, G., Endo, M., Wasalu, T.I., J. Lightwave Technol. 12, 1338 (1994)CrossRef
Wemple, S.H., Di-Domenico, M., J. Phys. Rev. B 3, 1338 (1971)CrossRef
Tanaka, K., Thin Solid Films 66, 271 (1980)CrossRef
El-Sayed, M. Farag, J. J. Opt. Materials 29, 397 (2009)
Wemple, S.H., Phys. Rev. B 7, 3767 (1973)CrossRef
Tauc, J., Grigorovici, R., Vancu, A., Phys. Status Solidi B 15, 627 (1966)CrossRef
Wakkad, M.M., Shokr, E.K., Mohamed, S.H., J. Non-Cryst. Solids 265, 157 (2000)CrossRef
Ravindra, N.M., Auluck, S., Shrivastava, V.K., Phys. Status Solidi B 93, K155 (1979)CrossRef
Pankove, J., Optical Processes in Semiconductors (Dover, New York, 1975), p. 91Google Scholar
Phillips, J.C., J. Non-Cryst. Solids 34, 153 (1979)CrossRef
Thorpe, M.F., J. Non-Cryst. Solids 57, 355 (1983)CrossRef
Kumar, P., Thangaraj, R., Sathiaraj, T.S., Phys. Status Solidi A 206, 1465 (2009)CrossRef
Paulings, L., The Chemical Bonds (Cornell University, New York, 1976), p. 92 Google Scholar
Moharan, A.H., Appl. Phys. A 66, 515 (1998)CrossRef
Pauling, L., J. Phys. Chem. 58, 662 (1954)CrossRef
Mehta, N., Agrahari, S.K., Kumar, A., Mater. Lett. 61, 837 (2007)CrossRef
Benoit, C., Aigrain, P., Balkanski, M., Selected Constants Relative to Semiconductors (Pergamon Press, New York, 1961), p. 36Google Scholar
Othman, A.A., Aly, K.A., Abousehly, A.M., Thin Solid Films 515, 3507 (2007)CrossRef