Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-19T19:07:37.386Z Has data issue: false hasContentIssue false

Characterization of reactively evaporated TiO2 thin films as high and medium index layers for optical applications

Published online by Cambridge University Press:  19 July 2006

M. H. Asghar*
Affiliation:
Thin Film Centre, University of Paisley, PA1 2BE, Scotland
F. Placido
Affiliation:
Thin Film Centre, University of Paisley, PA1 2BE, Scotland
S. Naseem
Affiliation:
Centre of Excellence in Solid State Physics, University of Punjab, Lahore, Pakistan
Get access

Abstract

Reactively evaporated TiO2 thin films were deposited on the glass substrate by electron beam heating technique. In the first stage evaporation rates are varied keeping substrate temperature fixed at 200 °C and oxygen flow rate at 9.0 sccm for all the samples. The deposition rates were varied from 0.12–0.20 nm/s with a step of 0.02 to optimize the optical constants for the film in the wavelength band of 380–850 nm as a high index material for multilayer optical coatings and filters. The films prepared at higher deposition rates have shown low refractive index values and comparatively higher extinction coefficients for the given substrate temperature in the desired spectral range. The best optical constants were observed for the sample prepared at 0.12 nm/s (at λ = 550 nm: n: 2.39 and k: of the order of 10−9). However, the variation in refractive index for all the samples was found to be in the range of 2.39–2.21 at 550 nm. In the second stage, films were prepared at a fixed deposition rate of 0.12 nm/s at different substrate temperature (50 °C, 100 °C, 150 °C and 200 °C) to study the optical properties of the films as a function of substrate temperature in order to investigate the potential of TiO2 film application as medium index layer. It was observed that refractive index decreases with decreasing substrate temperature. However, it was not found true for absorption. Instead, at Ts = 50 °C extremely low absorption (of the order of 10−5) has been observed with refractive index of 1.83, which increased sharply for next higher substrate temperature. Variation in absorption characteristics is found with varying substrate temperatures. The result shows that TiO2 films can be used as high and medium index layer in optical coating by varying the deposition parameters during growth. Effectively, one can achieve performance of two materials with only one. This effect could be utilized to produce variable index layers and coatings. Two samples with best high and medium optical constant values, were further investigated using Atomic force microscopy (AFM), X-ray diffraction (XRD) and scanning electron microscopy (SEM) for surface and structure analysis. The results show that the particle size for the film is very small (10–20 nm), and the surface appears to be very compact, smooth and free of pinholes with roughness in angstrom range, extremely suitable for optical applications in single and multilayer structures.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, M.T., Tan, H., Chen, L., Wang, J., Chou, S.Y., J. Vac. Sci. Technol. B 21, 660 (2003) CrossRef
Martinu, L., Poltras, D., J. Vac. Sci. Technol. A 18, 2619 (2000) CrossRef
Richards, B.S., Prog. Photovoltaics 12, 253 (2004) CrossRef
G. San Vicent, A. Morales, M.T. Gutierrez, Thin Solid Films 403, 404, 335 (2002)
Zakrzewska, K., Vacuum 74, 335 (2004) CrossRef
Rothschild, A., Edelman, F., Komem, Y., Cosandey, F., Sensor. Actuat. B 67, 282 (2000) CrossRef
Kaito, M., Oshima, Y., Uraba, K., Jpn J. Appl. Phys. 36, 4423 (1997) CrossRef
Qi, M., Itoh, K., Murabayash, M., Lavers, C.R., Opt. Lett. 25, 1427 (2000) CrossRef
Besserguenev, V.G., Pereira, R.J.F., Mateus, M.C., Khmelinskii, I.V., Nicula, R.C., Burkel, E., Int. J. Photoenergy 5, 99 (2003) CrossRef
De Giacomo, A., De Pascale, O., Appl. Phys. A 79, 1404 (2004)
L.C. Sui, P. Hou, Thin Solid Films 445, 456, 525 (2004)
Alam, M.J., Cameron, D.C., J. Sol-Gel Sci. Techn. 25, 137 (2002) CrossRef
Lobl, P., Huppertz, M., Mergel, D., Thin Solid Films 251, 72 (1994) CrossRef
Mardare, D., Rusu, G.I., Mat. Sci. Eng. B-Solid 75, 68 (2000) CrossRef
A. Voronov, F. Placido, 45th Annual Technical Conference Proceedings of Society of Vacuum Coaters, Florida, USA, 2002, pp. 603–606
Sekiguchi, H., Kanzawa, A., Imai, T., Honda, T., J. Vac. Sci. Technol. A 12, 3176 (1994) CrossRef
Narasimha Rao, K., Mohan, S., J. Vac. Sci. Technol. A 8, 3260 (1990)
M.A. Awarter, US Patent No. 2920 002, 1960
Ritter, E., J. Vac. Sci. Technol. 3, 225 (1996) CrossRef
Dundenhausen, G. Mollensledt, Z. Angew. Phys. 27, 191 (1969)
Heitmann, W., Appl. Optics 10, 2414 (1971) CrossRef
Narasimha Rao, K., Radha, T.S., Ramakrishna Rao, M., J. Indian Inst. Sci. 58, 315 (1976)
Pulker, K., Paesold, G., Ritter, E., Appl. Optics 15, 2986 (1976) CrossRef
M.H. Asghar, F. Placido, S. Naseem, to be published
F. Placido, A. Voronov, 45th Annual Technical Conference Proceeding of Society of Vacuum Coaters, Florida, USA, 2002, pp. 266–269
Heavens, O.S., Rep. Prog. Phys. 23, 1 (1960) CrossRef
Hass, G., Vacuum 2, 331 (1952) CrossRef
D.S. Brinsmaid, W.J. Keenan, G.J. Koch, W.F. Parsons, USA Patent 2 784 115 (1957)
Ogwu, A.A., Bouguerel, E., Ademosu, O., Moh, S., Crossan, E., Placido, F., Acta Mater. 53, 5151 (2005) CrossRef
Wang, S.G., Zhang, Q., Yoon, S.F., Ahn, J., Wang, Q., Yang, D.J. et al., Opt. Mater. 24, 509 (2003) CrossRef
Richards, B.S., Sol. Energ. Mat. Sol. C 79, 369 (2003) CrossRef
French, H.J., Klusch, W., Kuhr, M., Kassing, R., Thin Solid Films 201, 327 (1991) CrossRef
Huppauff, M., Bange, K., Lengeler, B., Thin Solid Films 230, 191 (1993) CrossRef
Yoldasa, B.E., Partlow, D.P., Thin Solid Films 129, 1 (1985) CrossRef
Pulker, H.K., Paesold, G., Ritter, E., Appl. Optics 15, 2986 (1976) CrossRef
Zhang, S., Zhu, Y.F., Brodie, D.E., Thin Solid Films 213, 265 (1992) CrossRef
D.C. Wong, A. Waugh, B. Yui, P. Sharrock, in 1st World Conference on Photovoltaic Energy Conversion, NJ, IEEE, New York, 1994, pp. 1473–1476
Fuyuki, T., Kobayashi, T., Matsunami, H., J. Electrochem. Soc. 135, 248 (1988) CrossRef
Lottiaux, M., Boulesteix, C., Nihoul, G., Varner, F., Flory, F., Galindo, R., Pelletier, E., Thin Solid Films 170, 107 (1989) CrossRef
Leprince-Wang, Y., Yu-Zhang, K., Nguyen Van, V., Souche, D., Rivory, J., Thin Solid Films 307, 38 (1997) CrossRef
Yoldas, B.E., Partlow, D.P., Thin Solid Films 129, 1 (1985) CrossRef
Krumov, E., Mankov, V., Starbova, K., J. Optoelectron. Adv. M. 5, 675 (2003)
A. Lakhtakia, R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham WA, 2005), p. 76
Barshilia, H.C., Rajam, K.S., B. Mater. Sci. 26, 233 (2003) CrossRef
Li-Jian Meng, V. Teixeira, H.N. Cui, F. Placido, Z. Xu, M.P. dos Santos, Appl. Surf. Sci. (2005). Available on line, http://www.sciencedirect.com/science/journal. DOI: 10.1016/j.apsusc.2005.10.012