Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T18:24:20.060Z Has data issue: false hasContentIssue false

Characterization of a newly synthesized organic nonlinear optical crystal: benzoyl valine

Published online by Cambridge University Press:  26 March 2010

T. K. Kumar
Affiliation:
Department of Physics, Presidency College, Chennai, 600005, India
R. S. Selvaraj
Affiliation:
Department of Physics, Presidency College, Chennai, 600005, India
S. Janarthanan
Affiliation:
Department of Physics, Presidency College, Chennai, 600005, India
Y. C. Rajan
Affiliation:
Department of Materials Science & Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
S. Selvakumar
Affiliation:
Department of Physics, L.N Government College, Ponneri, 601204, India
S. Pandi
Affiliation:
Department of Physics, Presidency College, Chennai, 600005, India
M. S. Selvakumar
Affiliation:
Department of Chemistry, St. Xavier's College, Palayamkottai, 627002, India
D. P. Anand*
Affiliation:
Department of Physics, St. Xavier's College, Palayamkottai, 627002, India
Get access

Abstract

Herein the synthesis and the crystal growth of benzoyl valine (BV), an organic nonlinear optical (NLO) material for frequency conversion was grown by slow evaporation solution growth technique at room temperature has been reported. The compound was prepared by Stockman method of benzoylation. The solubility curve shows linear nature up to a temperature of 313 K. XRD study reveals that the crystal belongs to monoclinic system with P21 non-centrosymmetric space group. The fundamental vibrational frequency of various functional groups (400-4000 cm-1) in the crystal was determined from FTIR analysis. 1H and 13C NMR spectral studies reveal the presence of proton and carbon network in the grown crystalline sample. The optical behaviour of the crystal was ascertained by optical UV absorption spectral studies. The UV cut off region (λmax) lies around 200 nm and the crystal is absolutely transparent from 220–800 nm suggesting its application as NLO material. The thermal stability of the crystal was determined by thermogravimetric and differential thermal analyses. Laser damage threshold of BV was found to be 0.34 GW/cm2 and hence BV can be used in frequency doubler system. Photoconductivity study of BV revealed negative photoconductiviting nature of the sample. The microhardness studies confirm that BV has a moderate Vickers hardness number (VHN) value in comparison to the other organic NLO crystals.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kitazawa, M., Higuchi, R.H., Takahashi, M., Appl. Phys. Lett. 64, 2477 (1994) CrossRef
Misoguti, L., Varela, A.T., Nunes, F.D., Bagnato, V.S., Melo, F.E.A., Mendes Filho, J., Zilio, S.C., Opt. Mater. 6, 147 (1996) CrossRef
Wang, W.S., Aggarwal, M.D., Choi, J., Bhat, K., Gebre, T., Shields, A.D., Penn, B.G., Frazier, D.O., J. Cryst. Growth 198, 578 (1999) CrossRef
W.T. Siltvast, Laser fundamentals, 2nd edn. (Cambridge University Press, 2004)
Lal, R.B., Zhang, H.S., Wang, W.S., Aggarwal, M.D., Lee, H.S.H., Benn, B.G., J. Cryst. Growth 174, 393 (1997) CrossRef
Periyasamy, B.K., Jebes, R.S., Gopalakrishnan, N., Balasubramaniam, T., Mater. Lett. 61, 4246 (2007) CrossRef
Lam, S.K., Chan, M.A., Lo, V., Opt. Mater. 18, 235 (2001) CrossRef
Wang, X., Xu, D., Lu, M., Yuvan, D., Huang, J., Cheng, X., Wang, S., Guo, S., Zhang, G., Pan, M., Duan, X., Yang, Z., Phys. Stat. Sol. A 191, 106 (2002) 3.0.CO;2-6>CrossRef
Zaccaro, J., Barruchel, J., Ibanez, A., J. Mater. Chem. 9, 403 (1999) CrossRef
Kuznetsov, V.A., Okhrimenko, T.M., Rak, M., Proc. SPIE 100, 3178 (1997)
Kuznetso, V.V., Okhrimenko, T.M., Rak, M., J. Cryst. Growth 164, 173 (1998)
Arivanandhan, M., Lakshi, A.R., Rathika, R., Gopalakrishnan, R., Raj, C.S., Shankaranarayan, K., Opt. Commun. 251, 172 (2007) CrossRef
Periyasmy, B.K., Jebas, R.S., Gopala Krishnan, N., Ba, T., Bhat, M.N., Dharma Prakash, S.M., J. Cryst. Growth 242, 245 (2002)
Datta, A., Pati, S.K., J. Chem. Phys. 118, 8420 (2003) CrossRef
Ittyachan, R., Thomas, P.C., Anand, D.P., Palanichamy, M., Sagayaraj, P., Mater. Chem. Phys. 93, 272 (2005) CrossRef
Kumar, T.K., Janarthanan, S., Ravikumar, S.M., Pandi, S., Vimalan, M., Sagayaraj, P., Anand, D.P., J. Mater. Sci. Technol. 24, 891 (2008) CrossRef
Anand, D.P., Selvakumar, S., Ambujam, K., Rajarajan, K., Gulam Mohammed, M., Sagayaraj, P., Indian J. Pure Appl. Phys. 43, 863 (2005)
L.T. Beuamy, The infrared spectra of complex molecules (J. Wiley & Sons, Inc., New York, 1954)
Ratajczak, H., Barycki, J., Pietraszko, A., Baran, J., Debrus, S., May, M., Venturini, J., J. Mol. Struct. 526, 269 (2000) CrossRef
Dhanuskodi, S., Jeyakumari, A.P., Manivannan, S., Philip, J., Tiwari, S.K., Spectrochim. Acta Part A 66, 318 (2007) CrossRef
Nakatani, H., Bosenberg, W.R., Cheng, L.K., Tang, C.L., Appl. Phys. Lett. 53, 2587 (1978) CrossRef
Hundelshausen, U.V., Phys. Lett. A 34, 405 (1971) CrossRef
R.H. Bube, Photoconductivity of Solids (Wiley, New York, 1981)
Ashraf, I.M., Elshaik, H.A., Badr, A.M., Cryst. Res. Technol. 39, 63 (2004) CrossRef
Pandi, S., Jayaraman, D., Mater. Chem. Phys. 71, 314 (2001) CrossRef
V.N. Joshi, Photoconductivity (Marcel Dekker, New York, 1990)
Shepherd, E.E.A., Sherwood, J.N., Simpson, G.S., J. Cryst. Growth 167, 709 (1996) CrossRef
Ristic, R.I., Shekunov, B.Y., Sherwood, J.N., J. Cryst. Growth 167, 693 (1996) CrossRef
Bailey, R.T., Cruicksharnk, F.R., Pugh, D., Sherwood, J.N., Simpson, G.S., Wilkie, S., J. Appl. Phys. 78, 1388 (1995) CrossRef