Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T15:18:52.795Z Has data issue: false hasContentIssue false

Characteristics and electrochemical mechanisms of a nanosilver solution formed by anodic dissolution with high DC voltage

Published online by Cambridge University Press:  27 August 2013

Nguyen Duc Hung
Affiliation:
Institute of Chemistry and Materials, 17 Hoang Sam Str., Cau Giay District, Ha Noi, Vietnam
Nguyen Minh Thuy*
Affiliation:
Institute of Chemistry and Materials, 17 Hoang Sam Str., Cau Giay District, Ha Noi, Vietnam
Nguyen Nhi Tru
Affiliation:
Vietnam Institute for Tropical Technology & Environmental Protection (VITTEP), 57A, Truong. Quoc. Dzung Str., Phu Nhuan District, Ho Chi Minh City, Vietnam
*
a e-mail: nmthuy@vnn.vn
Get access

Abstract

Nanosilver solution, prepared by anodic dissolution with high DC voltage in doubly distilled water, is free of undesirable chemicals and forms a highly pure product which is suitable for different applications, especially in the medical and pharmaceutical fields. In this study high DC voltage electrolysis was implemented to form nanosilver solutions with varying electrode diameters, anode-cathode distances, and electrolysis duration. The process was monitored while the cell was in operation, and the characteristics of the resulting solution were analysed afterwards. Cell reactions included: colour changes in the solution bulk due to the reduction of silver ions forming nanoparticles, anodic dissolution of silver, intense gas evolution at both electrodes, and chemical reactions in the solution causing nanosilver formation. UV-Vis characteristics, particle size distribution, transmission electron microscopy (TEM) images, solution concentrations, conductivities, and ζ-potentials were all found to depend on the electrode’s distances, temperature, electrolysis duration, and current density. Nanosilver preparation can thus be considered a combination of electrochemical reactions (such as silver dissolution at anode and water decomposition to generate hydrogen and oxygen), and chemical reactions between the electrolytic products from the solution bulk.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dueber, R., Battery Power Products & Technology 12, 32 (2008)
Jiang, Z., Yuan, W., Pan, H., Spectrochim. Acta Part A 61, 2488 (2005)CrossRef
Paarvulescu, V.I., Cojocaru, B., Paarvulescu, V., Richards, R., Li, Z., Cadigan, C., Granger, P., Miquel, P., Hardacre, C., J. Catal. 272, 92 (2010)CrossRef
Morones, J.R., et al., Nanotechnology 16, 2346 (2005)CrossRef
Pedersen, G., Hegde, B.M., The Indian Practitioner, A Monthly Journal Devoted to Medicine, Surgery and Public Health 63, 567 (2010)
Gautam, A., Singh, G.P., Ram, S., Synth. Met. 157, 5 (2007)CrossRef
Janardhanan, R., Karuppaiah, M., Hebalkar, N., Rao, T.N., Polyhydron 28, 2522 (2009)CrossRef
Lu, Y.-C., Chou, K.-S., Jounal of the Chinese Institute of Chemical Engineers 39, 673 (2008)CrossRef
Holladay, R.J., Christensen, H., Moeller, W.D., US Patent No: US 6, 214, 299 B1, Apr. 10, 2001 and US Patent No: US 6, 743, 348 B2, Jun. 1, 2004
Pillai, Z.S., Kamat, P.V., J. Phys. Chem. B 108, 945 (2004)CrossRef
Chau, N.H., Dung, T.T.N., Buu, N.Q., J. Adv. Sci. Tech., VAST 2, 241 (2008)CrossRef
Kandy, S.K., et al., Nanotechnology 18, 125610 (2007)CrossRef
Tseng, K.-H., Chen, Y.-C., Shyue, J.-J., J. Nanopart. Res. 13, 1865 (2011)CrossRef
Patel, K., Kapoor, S., Dave, D.P., Mukherjee, T., J. Chem. Sci. 117, 53 (2005)CrossRef
Du, B.D., Van Phu, D., Duy, N.N., Lan, N.T.K., Lang, V.T.K., Thanh, N.V.K., Phong, N.T.P., Hien, N.Q., J. Exp. Nanosci. 3, 207 (2008)CrossRef
Richmonds, C., Mohan Sankaran, R., Appl. Phys. Lett. 93, 131501 (2008)CrossRef
Bian, F., Zhang, X.-Z., Wang, Z.-H., Wu, Q., Hu, H., Xu, J.-J., Chin. Phys. Lett. 25, 4463 (2008)
Tien, D.-C., Liao, C.-Y., Huang, J.-C., Tseng, K.-H., Lung, J.-K., Tsung, T.-T., Kao, W.-S., Tsai, T.-H., Cheng, T.-W., Yu, B.-S., Lin, H.-M., Srobinski, L., Rev. Adv. Mater. Sci. 18, 750 (2008)
Hwang, K.Y., A1 (2006)
Hung, N.D., Thuy, N.M., Tuan, D.T., “Nano copper solution formed by anodic dissolution process under high voltage, in Proceedings of the 3rd International Workshop on Nanotechnology and Application, Vung Tau, Vietnam, 2011, pp. 295297 Google Scholar
Lkhagvajav, N., Yaşa, I., Çelik, E., Koizhaiganova, M., Sari Ari, Ö., Digest Journal of Nanomaterials and Biostructures 6, 149 (2011)
Dawy, M., Rifaat, H.M., Moustafa, S.A., Mousa, H.A., Aust. J. Basic Appl. Sci. 6, 257 (2012)
Chou, K.-S., Chang, Y.-C., Chiu, L.-H., Ind. Chem. Eng. Res. 51, 4905 (2012)CrossRef
Khaydarov, R.A., Khaydarov, R.R., Gapurova, O., Estrin, Y., Sheper, T., J. Nanopart. Res. 11, 1193 (2009)CrossRef
Pootawang, P., Saito, N., Takai, O., Lee, S.-Y., Nanotechnology 23, 395602 (2012)CrossRef
Evanoff Jr., D.D., Chumanov, G., Chem Phys Chem 6, 1221 (2005)CrossRef