Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T20:35:47.406Z Has data issue: false hasContentIssue false

Barrier height inhomogeneities in Cu-nMoSe2 Schottky diode

Published online by Cambridge University Press:  28 September 2011

C.K. Sumesh*
Affiliation:
Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388 421, Gujarat, India
K.D. Patel
Affiliation:
Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India
V.M. Pathak
Affiliation:
Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India
R. Srivastav
Affiliation:
Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India
Get access

Abstract

The current-voltage characteristics of Cu-nMoSe2 Schottky diodes measured over a wide temperature range 50 < T <300 K have been interpreted on the basis of thermionic emission mechanism assuming Gaussian barrier distribution. A decrease in the experimental barrier height Φb0 and an increase in the ideality factor n with a decrease in temperature have been explained on the basis of barrier height inhomogeneities at the metal-semiconductor interface. It is proven that the presence of a distribution of barrier heights is responsible for the apparent decrease of the zero-bias barrier height. The voltage dependence of the standard deviation causes the increase of ideality factor at low temperatures. The mean barrier height Φb0 = 1.05 eV and the Richardson constant A* = 89.7 A cm−2 k−2 have been calculated by means of the modified Richardson plot. The value of the Richardson constant found is much closer than that obtained without considering the inhomogeneous barrier heights with that of the theoretical value.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pouzet, J., Bernede, J.C., Mat. Chem. Phys. 36, 304 (1994)CrossRef
Huang, J.M., Kelley, D.F., Chem. Mater. 12, 2825 (2000)CrossRef
Harpeness, R., Gedanken, A., Weissb, A.M., Slifkin, M.A., J. Mater. Chem. 13, 2603 (2003)CrossRef
Cohen, S.R., Rapoport, L., Thin Solid Films 324, 190 (1998)CrossRef
Hussain, A., Auluck, S., Phys. Rev. B 7, 155114 (2005)
Boker, Th., Severin, R., Phys. Rev. B 64, 235305 (2001)CrossRef
Sugai, S., Ueda, T., Phys. Rev. B 26, 6554 (1990)CrossRef
Rhoderick, E.H., Williams, R.H., Metal-Semiconductor Contacts (Clarendon, Oxford, 1988)Google Scholar
Sze, S.M., Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
Donoval, D., Vladimir, D., Marek, L., Solid State Electron. 42, 235 (1998)CrossRef
de Sousa Pires, J., Donoval, D., Tove, P.A., Solid State Electron. 25, 989 (1982)CrossRef
Tung, R.T., Ng, K.K., Gibson, J.M., Levi, A.F.J., Phys. Rev. B 33, 7077 (1986)CrossRef
Mi, Y.Y., Wang, S.J., Dong, Y.F., Chai, J.W., Pan, J.S., Huan, A.C.H., Ong, C.K., Surf. Sci. 599, 255 (2005)CrossRef
Wagner, L.F., Young, R.W., Sugerman, A., IEEE Trans. Electron Devices Lett. 4, 320 (1983)CrossRef
Padovani, F.A., Stratton, R., Solid State Electron. 9, 695 (1966)CrossRef
Sumesh, C.K., Patel, K.D., Pathak, V.M., Srivastava, R., J. Ovonic Res. 4, 61 (2008)
Sumesh, C.K., Patel, K.D., Pathak, V.M., Srivastava, R., Chalcogenide Lett. 5, 177 (2008)
Agarwal, M.K., Patel, P.D., Gupta, S.K., J. Cryst. Growth 129, 559 (1993)CrossRef
Huang, Y.-S., Chinese J. Phys. 22, 43 (1984)
Piotrowska, A., Guivarch, A., Peolous, G., Solid State Electron. 26, 179 (1983)CrossRef
Zhu, S.Y., Van Meirhaeghe, R.L., Forment, S., Ru, G.P., Qu, X.P., Li, B.Z., Solid State Electron. 48, 1205 (2004)CrossRef
Werner, J.H., Guttler, H.H., J. Appl. Phys. 69, 1522 (1991)CrossRef
Gumus, A., Turut, A., Yalcin, A., J. Appl. Phys. 91, 245 (2002)CrossRef
Song, Y.P., Van Meirhaeghe, R.L., Aflere, W.H., Cardon, F., Solid State Electron. 29, 633 (1986)CrossRef
Sullivan, J.P., Tung, R.T., Pinto, M.R., Graham, W.R., J. Appl. Phys. 70, 7403 (1991)CrossRef
Chen, Y.G., Ogura, M., Okushi, H., J. Appl. Phys. Lett. 82, 4367 (2003)CrossRef
Karatas, S., Altindal, S., Turut, A., Ozmen, A., Appl. Surf. Sci. 217, 250 (2003)CrossRef
Monch, W., J. Vac. Sci. Technol. B 17, 1867 (1999)CrossRef
Zhu, Z.Y., Van Meirhaeghe, R.L., Detavernier, C., Cardon, F., Ru, G.P., Qu, X.P., Li, B.Z., Solid State Electron. 44, 663 (2000)CrossRef
Wittmer, M., Phys. Rev. B 42, 5249 (1990)CrossRef
Aydin, M.E., Yıldırım, N., Turut, A., J. Appl. Phys. 102, 43701 (2007)CrossRef
Ayyildiz, E., Cetin, H., Zs. Horvath, J. Appl. Surf. Sci. 252, 1153 (2005)CrossRef
Tung, R.T., Phys. Rev. B 45, 13509 (1992)CrossRef
Duman, S., Gurbulak, B., Turut, A., Appl. Surf. Sci. 253, 3899 (2007)CrossRef
Gumus, A., Turut, A., Yalcin, N., J. Appl. Phys. 91, 245 (2002)CrossRef
Chand, S., Bala, S., Appl. Surf. Sci. 252, 358 (2005)CrossRef
Chand, S., Kumar, J., J. Appl. Phys. 82, 5005 (1997)CrossRef
Chin, V.W.L., Green, M.A., Storey, J.W.V., Solid State Electron. 36, 40731 (1990)
Dobrocka, E., Osvald, J. Appl. Phys. Lett. 65, 575 (1994)CrossRef
Horvath, Zs.J., Bosacchi, A., Franchi, S., Gombia, E., Mosca, R., Motta, A., J. Mater. Sci. Eng. B 28, 429 (1994)CrossRef
Schmitsdor, R.F., Kampen, T.U., Monch, W., Surf. Sci. 324, 249 (1997)CrossRef
Cetin, H., Ayyidiz, E., Semicond. Sci. Technol. 20, 625 (2005)CrossRef
Werner, J.H., Guttler, H.H., J. Appl. Phys. 73, 1315 (1993)CrossRef
Freeouf, J.L., Jackon, T., Laux, S.Z., Woodall, J.M., Appl. Phys. Lett. 40, 634 (1982)CrossRef