Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:50:22.739Z Has data issue: false hasContentIssue false

Annealing effect on the magnetic properties of evaporated CoCr thin films

Published online by Cambridge University Press:  27 August 2013

Ahmed Kharmouche*
Affiliation:
Laboratoire d’Etudes des Surfaces et Interfaces des Matériaux Solides (LESIMS), University Setif 1, 19000 Setif, Algeria
Intissar Djouada
Affiliation:
Laboratoire d’Etudes des Surfaces et Interfaces des Matériaux Solides (LESIMS), University Setif 1, 19000 Setif, Algeria UniversitéAbderrahmane Mira, 06000 Béjaia, Algeria
Guy Schmerber
Affiliation:
IPCMS-GEMME, UMR-CNRS, Université Louis Pasteur, 23 rue du Loess, B.P. 43, 67034 Strasbourg Cedex 2, France
Get access

Abstract

Series of CoxCr1−x thin films have been evaporated under vacuum onto monocrystalline silicon substrate, x being atomic percent of cobalt. The thickness ranges from 17 to 220 nm, values measured by Rutherford backscattering spectrometry. The samples have been annealed under vacuum for one hour at 700 °C. The as deposited films show a hexagonal close packed (hcp) structure while the annealed films show both hexagonal close packed and face centered cubic (fcc) structures. While the as deposited films are under a compressive stress, the annealed films, on the contrary, are under a tensile stress. The hysteresis loops present the same features for the as deposited and annealed films concerning the in-plane and out-of-plane anisotropies. Nevertheless, the coercive field is strongly improved for the annealed films. Moreover, these latter films present very high values of the squareness. A squareness value up to 0.96 has been measured. All these results and others are analyzed and discussed.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schoenmaker, J., Oppenheim, I.C., Chinaglia, E.F., J. Magn. Magn. Mater. 226–230, 1653 (2001)CrossRef
Kharmouche, A., J. Magn. Magn. Mater. 327, 91 (2013)CrossRef
Chaiken, A., Gutoerez, C.J., Krebs, J., Prinz, G.A., J. Magn. Magn. Mater. 125, 228 (1993)CrossRef
Kharmouche, A., Chérif, S.-M., Schmerber, G., Bourzami, A., J. Magn. Magn. Mater. 310, 152 (2007)CrossRef
Kharmouche, A., J. Nanosci. Nanotechnol. 11, 4757 (2011)CrossRef
Futamoto, M., Hiramaya, Y., Honda, Y., Kikukawa, A., Tanahashi, K., Ishikawa, A., J. Magn. Magn. Mater. 235, 281 (2001)CrossRef
De Gronkel, H.A.M., Bloemen, P.J.H., van Alphen, E.A.M., de Jonge, W.J.M., Phys. Rev. B. 49, 11327 (1994)CrossRef
Huang, G.-F., Huang, W.-Q., Wang, L.-L., Zou, B.S., Pan, A., J. Magn. Magn. Mater. 324, 4043 (2012)CrossRef
Yamanaka, K., Hamamoto, T., Nakano, Y., Miura, M., IEEE Trans. Magn. 37, 1599 (2001)CrossRef
Li, W., Peng, Y., Jones, G.A., Shen, T.H., Hill, G., J. Appl. Phys. 97, 034308 (2005)CrossRef
Bozorth, R.M., Ferromagnetism (D. Van Nostrand Company, Inc., Princeton, New Jersy, 1968)Google Scholar
Kharmouche, A., Djouada, I., Appl. Surf. Sci. 254, 5732 (2008)CrossRef
Djouada, I., Kharmouche, A., Schmerber, G., Eur. Phys. J. Appl. Phys. 58, 10301 (2012)CrossRef
Honda, S., Yamashita, N., Ohkoshi, M., Kusuda, T., IEEE Trans. Magn. MAG-20, 91 (1984)
Ariake, J., Kiya, T., Honda, N., Ouchi, K., Adamik, M., Czigany, Z., Safran, G., Radnoczi, G., IEEE Trans. Magn. 57, 1573 (2001)CrossRef
Chen, P.Y., Hu, S.F., Huang, C.Y., Liu, R.S., J. Electromagn. Waves Appl. 24, 1609 (2010)CrossRef
Chiolerio, A., Martino, P., Coïsson, M., Allia, P., J. Magn. Magn. Mater. 321, 3099 (2009)CrossRef