Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-07T05:42:11.782Z Has data issue: false hasContentIssue false

Analytical study of vertical external-cavity surface-emitting organic lasers

Published online by Cambridge University Press:  23 November 2011

H. Rabbani-Haghighi*
Affiliation:
Laboratoire de Physique des Lasers, Université Paris 13/CNRS, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
S. Forget
Affiliation:
Laboratoire de Physique des Lasers, Université Paris 13/CNRS, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
A. Siove
Affiliation:
Laboratoire de Physique des Lasers, Université Paris 13/CNRS, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
S. Chénais
Affiliation:
Laboratoire de Physique des Lasers, Université Paris 13/CNRS, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
Get access

Abstract

In this paper we report a detailed study of emission dynamics of an organic solid-state laser structure so-called VECSOL standing for Vertical External-Cavity Surface-emitting Organic Laser recently developed in our group. An optical-optical efficiency of 43% and 6.3% was reported for a 4-mm-long cavity incorporating 18-μm-thick film of Poly(methyl methacrylate) (PMMA) doped with 1 wt.% of Rhodamine 640 when pumped with 7-ns-long and 0.5-ns-long pulses respectively. In order to understand the difference seen in lasing efficiency as a function of different parameters such as cavity length or pump pulse duration, Tang-Statz-deMars cavity rate equations are used to model the emission behavior in a pulsed regime. Based on this model, conversion efficiency could be optimized practically to values as high as 57%. Furthermore, some characteristics of this laser architecture such as lasing lifetime (up to 140 000 pulses at two times above lasing threshold), wavelength tuning (over 40 nm) and the system power scalability with potential operation up to mJ level are investigated.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tessler, N., Adv. Mater. 11, 363 (1999)3.0.CO;2-Y>CrossRef
McGehee, M.D., Heeger, A.J., Adv. Mater. 12, 1655 (2000)3.0.CO;2-2>CrossRef
Samuel, I.D.W., Turnbull, G.A., Chem. Rev. 107, 1272 (2007)CrossRef
Woggon, T., Klinkhammer, S., Lemmer, U., Appl. Phys. B: Lasers Opt. 99, 47 (2010)CrossRef
Oki, Y. et al., Opt. Rev. 12, 301 (2005)CrossRef
Lu, M. et al., Appl. Phys. Lett. 93, 111113 (2008)CrossRef
Yang, Y., Turnbull, G.A., Samuel, I.D.W., Adv. Funct. Mater. 20, 2093 (2010)CrossRef
Kuriki, K. et al., Appl. Phys. Lett. 77, 331 (2000)CrossRef
Rabbani-Haghighi, H. et al., Appl. Phys. Lett. 95, 033305 (2009)CrossRef
Tessler, N., Denton, G.J., Friend, R.H., Nature 382, 695 (1996)CrossRef
Persano, L. et al., Appl. Phys. Lett. 88, 121110 (2006)CrossRef
Garcia-Moreno, I. et al., Adv. Funct. Mater. 19, 2547 (2009)CrossRef
Yang, Y., Turnbull, G.A., Samuel, I.D.W., Appl. Phys. Lett. 92, 163306 (2008)CrossRef
Riedl, T. et al., Appl. Phys. Lett. 88, 241116 (2006)CrossRef
Sakata, H., Takeuchi, H., Appl. Phys. Lett. 92, 113310 (2008)CrossRef
Reufer, M. et al., Appl. Phys. Lett. 84, 3262 (2004)CrossRef
Rabe, T. et al., Phys. Rev. Lett. 102, 137401 (2009)CrossRef
Yap, B.K. et al., Nature Mater. 7, 376 (2008)CrossRef
Hu, W.T. et al., Appl. Opt. 36, 579 (1997)CrossRef
Costela, A. et al., Appl. Phys. B: Lasers Opt. 76, 365 (2003)CrossRef
Zavelani-Rossi, M. et al., Synt. Met. 139, 901 (2003)CrossRef
Rabbani-Haghighi, H. et al., Opt. Lett. 35, 1968 (2010)CrossRef
Forget, S. et al., Appl. Phys. Lett. 98, 131102 (2011)CrossRef
Svelto, O., Principles of Lasers, 5th edn. (Springer, New York, 2010)CrossRefGoogle Scholar
Ramon, M.C. et al., J. Appl. Phys. 97, 073517 (2005)CrossRef
Navarro-Fuster, V. et al., Appl. Phys. Lett. 97, 171104 (2010)CrossRef