Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T17:25:56.147Z Has data issue: false hasContentIssue false

The analysis of scattering mechanisms in GaN by relaxation time approximation and the comparison by the transport to quantum scattering time ratios

Published online by Cambridge University Press:  21 March 2007

S. Gökden*
Affiliation:
Balikesir University, Department of Physics, Balıkesir, Turkey
Get access

Abstract

The effects of conventional scattering mechanisms on the electron Hall mobility in GaN are calculated and analysed. The ratios of the transport to quantum scattering time are also calculated and the ratio is evaluated in closed form without any fitting parameters. The common interpretation of the transport and quantum lifetime ratios by using the analytical equation solutions gives us dominant scattering mechanisms. It has been observed that the ratio is larger for dislocation scattering than for impurity scattering. These both results are compared and summarized that the Coulombic scattering from a charged dislocation core is more dominant than impurity scattering.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Heying, B., Wu, X.H., Keller, S., Li, Y., Kapolnek, D., Keller, B.P., DenBaars, S.P., Speck, J.S., Appl. Phys. Lett. 68, 643 (1996) CrossRef
Ponce, F.A., Cherns, D., Young, W.T., Steeds, J.W., Appl. Phys. Lett. 69, 770 (1996) CrossRef
Weimann, N.G., Eastman, L.F., Doppalapudi, D., Ng, H.M., Moustakas, T.D., J. Appl. Phys. 83, 3656 (1998) CrossRef
Das Sarma, S., Stern, F., Phys. Rev. B 32, 8442 (1985) CrossRef
Look, D.C., Sizelove, J.R., Phys. Rev. Lett. 82, 1237 (1999) CrossRef
Harris, J.J., Lee, K.J., Wang, T., Sakai, S., Bougrioua, Z., Moerman, I., Thrush, E.J., Webb, J.B., Tang, H., Martin, T., Maude, D.K., Portal, J.C., Semicond. Sci. Technol. 16, 1402 (2001) CrossRef
Brana, A.F., Diaz-Paniagua, C., Batallan, F., Garrido, J.A., Munoz, E., Omnes, F., J. Appl. Phys. 88, 932 (2000) CrossRef
Wang, T., Bai, J., Sakai, S., Ohno, Y., Ohno, H., Appl. Phys. Lett. 76, 2737 (2000) CrossRef
Hsu, L., Walukiewicz, W., Appl. Phys. Lett. 80, 2508 (2002) CrossRef
Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., Sawaki, N., J. Cryst. Growth 98, 209 (1990) CrossRef
Ridley, B.K., Foutz, B.E., Eastman, L.F., Phys. Rev. B 61, 16862 (2000) CrossRef
Pödör, B., Phys. Status Solidi 16, K167 (1966) CrossRef
Debdeep, J., Gossard, A.C., Mishra, U.K., Appl. Phys. Lett. 76, 1707 (2000)
Ng, H.M., Doppalapudi, D., Moustakas, T.D., Weimann, N.G., Eastman, L.F., Appl. Phys. Lett. 73, 821 (1998) CrossRef
Zanato, D., Gökden, S., Balkan, N., Ridley, B.K., Schaff, W.J., Superlattices Microstruct. 34, 77 (2003) CrossRef
Ridley, B.K., Gupta, R., Phys. Rev. B 43, 4939 (1991) CrossRef
K. Seeger, Semiconductor Physics (Springer, 1973)
Wolfe, C.M., Stilman, G.E., Lindley, W.T., J. Appl. Phys. 41, 3088 (1970) CrossRef
R.A. Smith, Semiconductors (Cambridge University Press, Cambridge, 1978)
Huang, D., Yun, F., Reshchikov, M.A., Wang, D., Morkoç', H., Rode, D.L., Farina, L.A., Kurdak, Ç., Tsen, K.T., Park, S.S., Lee, K.Y., Solid-State Electron. 45, 711 (2001) CrossRef
D. Jena, U.K. Mishra, e-print arXiv:cond-mat/0209663 2, 1 (2002)