Skip to main content Accessibility help

An influence of bottom electrode material on electrical conduction and resistance switching of TiOx thin films

  • Kim Ngoc Pham (a1), Trung Do Nguyen (a1), Thi Kieu Hanh Ta (a1), Khanh Linh Dao Thuy (a1), Van Hieu Le (a1), Duy Phong Pham (a2), Cao Vinh Tran (a2), Derrick Mott (a3), Shinya Maenosono (a3), Sang Sub Kim (a4), Jaichan Lee (a5), Duc Thang Pham (a6) and Bach Thang Phan (a1) (a2)...


We investigated the electrical conduction and resistance switching mechanisms of TiOx thin films grown on three kinds of bottom electrode at room temperature (an inert Pt, an active Ti and fluorine tin oxide FTO electrodes). The bottom electrode materials strongly affect the I-V characteristics and switching parameters. The I-V characteristic is explained through the presence of interface states in the metal electrode devices (Pt and Ti) and the work function in the metal oxide device (FTO). The Pt device has the smallest VSET and largest switching ratio, while the Ti device shows the largest VSET and smallest switching ratio. XPS data shows non-lattice oxygen in TiOx films. Therefore, the proposed bipolar resistance switching arises from formation and rupture of filament paths, generated by the movement of oxygen vacancies. All devices depict the same electrical conductions, trap-controlled space-charge-limited, FN tunneling and Ohmic conductions for a high resistance state and a low resistance state, respectively. In this study, the rarely reported FN tunneling conduction in published TiOx-based ReRAM device was found, which can be attributed to an influence of the bottom electrode on the electronic distribution in devices.


Corresponding author


Hide All
[1]Park, J.B., Biju, K.P., Jung, S.J., Lee, W.T., Lee, J.M., Kim, S.H., Park, S.S., Shin, J.H., Hwang, H.S., IEEE Electron Device Lett. 32, 476 (2011)
[2]Choi, B.J., Jeong, D.S., Kim, S.K., Rohde, C., Choi, S., Oh, J.H., Kim, H.J., Hwang, C.S., Szot, K., Waser, R., Reichenberg, B., Tiedke, S., J. Appl. Phys. 98, 033715 (2005)
[3]Jung, S.J., Kong, J.M., Song, S.H., Lee, K.H., Lee, T.H., Hwang, H.S., Jeon, S.H., J. Electrochem. Soc. 157, H1042 (2010)
[4]Yang, J.J., Strachan, J.P., Miao, F., Zhang, M.X., Pickett, M.D., Yi, W., Ohlberg, D.A.A., Ribeiro, G.M., Williams, R.S., Appl. Phys. A 102, 785 (2011)
[5]Biju, K.P., Liu, X.J., Bourim, E.M., Kim, I.S., Jung, S.J., Park, J.B., Hwang, H.S., Electrochem. Solid-State Lett. 13, H443 (2010)
[6]Huang, J.J., Kuo, C.W., Chang, W.C., Hou, T.H., Appl. Phys. Lett. 96, 262901 (2010)
[7]Guerin, D., Ismat Shah, S., J. Vac. Sci. Technol. A15, 712 (1997)
[8]McCafferty, E., Wightman, J.P., Appl. Surf. Sci. 143, 92 (1999)
[9]Mannhart, J., Blank, D.H.A., Hwang, H.Y., Millis, A.J., Triscone, J.-M., MRS Bulletin 33, 1027 (2008)
[10]Andersson, A., Johansson, N., Bröms, P., Yu, N., Lupo, D., Salaneck, W.R., Adv. Mater. 10, 859 (1998)
[11]Yang, W.Y., Rhee, S.W., Appl. Phys. Lett. 91, 232907 (2007)
[12]Schottky, W., Naturw. 26, 843 (1938)
[13]Mott, N.F., Gurney, R.W., Electronic Processes in Ionic Crystals (Clarendon, Oxford, 1940)
[14]Frenkel, J., Tech. Phys. USSR 5, 685 (1938)
[15]Sze, S.M., Physics of Semiconductor Devices, 2nd edn, vol. 1 (Wiley, New York, 1981), p. 28
[16]Waser, R., Aono, M., Nat. Mater. 6, 833 (2007)
[17]Honig, J.M., Reed, T.B., Phys. Rev. 174, 1020 (1968)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed