Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T19:24:37.566Z Has data issue: false hasContentIssue false

An effective method for designing new structural left-handed material based on topology optimisation

Published online by Cambridge University Press:  28 January 2011

W. Wang*
Affiliation:
School of Civil Engineering, Shenyang Jianzhu University, 110168, Shenyang, P.R. China
W. K. Xu
Affiliation:
Key Laboratory of Liaoning Province for Composite Structural Analysis of Aerocraft and Simulation, Shenyang Aerospace University, 110136, Shenyang, P.R. China
H. Hai
Affiliation:
School of Civil Engineering, Shenyang Jianzhu University, 110168, Shenyang, P.R. China
Get access

Abstract

A systematic method for the design of potential microstructure configurations of structural left-handed materials (LHMs) based on topology optimisation technique is presented, and a single objective and a multi-objective optimisation model are proposed. The material considered is a periodic array of dielectric substrates attached with metal film pieces, and the microstructure design of left-handed material is formulated through determining the arrangements of those metal pieces. Different from the conventional configurations of LHMs which consist of magnetic resonators and wires, our results showed that novel integrative configurations without wires can be obtained as microstructures of LHMs. Topology optimisation technique is a universal and effective tool for configuration design of LHMs, and many new structural LHMs with the desired electromagnetic characteristics can be obtained by this systematic approach.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Veselago, V.G., Sov. Phys. Usp. 10, 509 (1968) CrossRef
Pendry, J.B., Holden, A.J., Stewart, W.J., Phys. Rev. Lett. 76, 4773 (1996) CrossRef
Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., J. Phys.: Condens. Matter 10, 4785 (1998)
Pendry, J.B., Holden, A.J., Robbins, D.J., IEEE Trans. Microw. Theory Tech. 47, 2075 (1999) CrossRef
Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., Phys. Rev. Lett. 84, 4184 (2000) CrossRef
Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S., Appl. Phys. Lett. 78, 489 (2001) CrossRef
Shelby, R.A., Smith, D.R., Schultz, S., Science 292, 77 (2001) CrossRef
Smith, D.R., Pendry, J.B., Wiltshire, M.C.K., Science 305, 788 (2004) CrossRef
b Ramakrishna, S.A., Rep. Prog. Phys. 68, 449 (2005) CrossRef
Ye, H.X., Jin, Y.Q., Eur. Phys. J. Appl. Phys. 31, 3 (2005) CrossRef
Wan, N.N., Huang, D., Cheng, Q., Jiang, W.X., Liu, R., Cui, T.J., Eur. Phys. J. Appl. Phys. 48, 21101 (2009) CrossRef
Zhang, L., Tuttle, G., Soukoulis, C.M., Photon. Nanostruct. 2, 155 (2004) CrossRef
Kafesaki, M., Koschny, Th., Penciu, R.S., Gundogdu, T.F., Economou, E.N., Soukoulis, C.M., J. Opt. A: Pure Appl. Opt. 7, S12 (2005) CrossRef
X.B. Cai, G.K. Hu, in Proc. Int. Symp. on Biophotonics, Nanophotonic and Metamaterials (2006), p. 517
Zhu, W.R., Zhao, X.P., Ji, N., Appl. Phys. Lett. 90, 011911 (2007) CrossRef
Simovski, C.R., He, L.X., Phys. Lett. A 311, 254 (2003) CrossRef
Chen, H.S., Ran, L.X., Huangfu, J.T., Phys. Rev. E 70, 057605 (2004) CrossRef
Chen, H.S., Ran, L.X., Huangfu, J.T., Appl. Phys. Lett. 86, 151909 (2005) CrossRef
Zhou, J.F., Zhang, L., Tuttle, G., Koschny, Th., Soukoulis, C.M., Phys. Rev. B 73, 041101 (2006) CrossRef
Zhou, J.F., Koschny, Th., Zhang, L., Tuttle, G., Soukoulis, C.M., Appl. Phys. Lett. 88, 221103 (2006) CrossRef
Kafesaki, M., Tsiapa, I., Katsarekes, N., Koschny, Th., Soukoulis, C.M., Economou, E.N., Phys. Rev. B 75, 235114 (2007) CrossRef
Liu, Y.H., Luo, C.R., Zhao, X.P., Acta Phys. Sinica 56, 5883 (2007)
Zhao, H.J., Zhou, J., Zhao, Q., Li, B., Kang, L., Appl. Phys. Lett. 91, 131107 (2007) CrossRef
Kildishev, A.V., Chettiar, U.K., Liu, Z.T., Shalaev, V.M., Kwon, D.H., Bayraktar, Z., Werner, D.H., J. Opt. Soc. Am. B 24, A34 (2007) CrossRef
Chen, P.Y., Chen, C.H., Wang, H., Tsai, J.H., Ni, W.X., Opt. Express 16, 12806 (2008) CrossRef
Diaz, A.R., Sigmund, O., Struct. Multidisc. Optim. 41, 163 (2010) CrossRef
Smith, D.R., Schultz, S., Markos, P., Soukoulis, C.M., Phys. Rev. B 65, 195104 (2002) CrossRef
Smith, D.R., Vier, D.C., Koschny, Th., Soukoulis, C.M., Phys. Rev. E 71, 036617 (2005) CrossRef
Chen, X.D., Grzegorezyk, T.M., Wu, B.I., Pacheco, J., Kong, J.A., Phys. Rev. E 70, 016608 (2004) CrossRef
Gao, Q., Yan, D.-B., Fu, Y.-Q., Yuan, N.-C., Microw. Opt. Technol. Lett. 47, 20 (2005)
Hussein, M.I., Hamza, K., Hulbert, G.M., Struct. Multidisc. Optim. 31, 60 (2006) CrossRef
K. Deb, Multi-objective Optimisation using Evolutionary Algorithms (Wiley, London, 2001)
Markos, P., Soukoulis, C.M., Opt. Express 11, 649 (2003) CrossRef
Th. Koschny, P. Markos, D.R. Smith, C.M. Soukoulis, Phys. Rev. E 68, 065602 (2003) CrossRef