Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-26T08:38:58.019Z Has data issue: false hasContentIssue false

Ageing phenomena and determination of the optical self absorption coefficient in PN junction

Published online by Cambridge University Press:  15 October 2001

S. Guermazi*
Affiliation:
Département de Physique, Institut Préparatoire aux Études d'Ingénieurs de Sfax, Tunisia
Y. Mlik
Affiliation:
Département de Physique, Institut Préparatoire aux Études d'Ingénieurs de Sfax, Tunisia
B. El Jani
Affiliation:
Laboratoire de Physique des Matériaux, Faculté des Sciences de Monastir, Tunisia
C. Grill
Affiliation:
Laboratoire de Microscopie Électronique, Université Montpellier 2, France
Get access

Abstract

We have developed a model for the calculation of the induced current due to an electron beam with an extended generation profile. The analytical expression of the electron beam induced current (EBIC) is obtained by solving the steady-state continuity equation using the Green function method. In the case of a sulphur doped (Ga0.7Al0.3As:N+/Ga0.7Al0.3As:P) sample prepared by metalorganic vapour phase epitaxy (MOVPE) method, the experimental current profile, measured by SEM enabled us to calculate the diffusion length of the minority carriers (Lp = 1 μm in the N region and Ln = 1.80 μm in the P region of the ternary sample). Far from the depletion layer, the experimental current profile measured provided us the optical self absorption coefficient of this sample: ap = 1.483 μm−1 in the N region and an = 0.167 μm−1 in the P region. According to our EBIC model, the width of the depletion layer of this sample is about 0.8 μm, while at elaboration of the sample, 10 years ago, the width of the depletion layer deduced from the characteristic curve I(V) was about 300−400 Å. This widening of the depletion layer is due to the ageing of the diode.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Guermazi, S., Toureille, A., Grill, C., El Jani, B., Lakhoua, N., J. Phys. III France 6, 481 (1996). CrossRef
Guermazi, S., Toureille, A., Grill, C., El Jani, B., Lakhoua, N., Les Annales Magrébines de l'Ingénieur 11, 37 (1997).
Guermazi, S., Toureille, A., Grill, C., El Jani, B., Eur. Phys. J. AP 9, 43 (2000). CrossRef
Akamatsu, B., Henoc, J., Henoc, P., J. Appl. Phys. 52, 7245 (1981). CrossRef
Kanaya, K., Okayama, S., J. Phys. D Appl. Phys. 5, 43 (1972). CrossRef
P.H Morse, H. Feshbach, Methods of theoretical physics (New York, Toronto-London, 1953), Chap. 7, Part I.
Jensen, B., J. Appl. Phys. 50, 5800 (1979). CrossRef
Zarem, H.A., Sercel, P.C., Lens, J.A., Eng, L.E., Yariv, A., Vahala, K.J., Appl. Phys. Lett. 55, 1647 (1989). CrossRef
Herlmann, R., Delgart, G., Mitdank, R., Jacobs, B., Phys. Stat. Sol. A 123, 539 (1991). CrossRef
Pavesi, L., Guzzi, M., J. Appl. Phys. 75, 4779 (1994). CrossRef
Le Gressus, C., Blaise, G., IEEE Trans. Electr. Insul. 27, 472 (1992). CrossRef
A.M. Stoneham, supplément à la revue ``Le vide : science, technique et applications", No. 287, 1998, p. 1.
Zong, X., Shen, C., Liu, S., Wu, Z., Chen, Y., Evans, B.D., Gonzalez, R., Sellers, C.H., Phys. Rev. B 49, 15514 (1994). CrossRef