Hostname: page-component-7d684dbfc8-jr2wd Total loading time: 0 Render date: 2023-09-27T21:42:26.028Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Theoretical studies on the spin Hamiltonian parameters for monovalent chromium in ZnX (X=S, Se, Te) and CdTe

Published online by Cambridge University Press:  03 March 2014

Xian-Fen Hu*
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China School of Science, Southwest University of Science and Technology of China, Mianyang 621010, P.R. China
Shao-Yi Wu
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Min-Quan Kuang
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Guo-Liang Li
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Get access


The spin Hamiltonian parameters (g factor and hyperfine structure constants) of Cr+ in ZnX (X = S, Se, Te) and CdTe are theoretically investigated, using the perturbation formulas of these parameters for a tetrahedral 3d5 cluster. Both the contributions from the crystal-field (CF) and charge transfer (CT) mechanisms are considered from the cluster approach. The calculated results show good agreement with the experimental data. The CT contribution to g-shift Δg (=g − gs, where gs =2.0023 is the spin only value) is opposite (positive) in sign related to the CF one, and its importance (characterized by the relative ratio (|ΔgCTgCF|) is 11%, 66% and 104% (71%) for ZnS, ZnSe and ZnTe (CdTe), respectively. ACT from the CT contribution to hyperfine structure constant is the same (positive) in sign and about 50–53% in magnitude as compared with ACF from the CF one.

Research Article
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Chugaia, O.N., et al., Phys. Solid State 55, 60 (2013)CrossRef
Kobayashi, M., et al., New J. Phys. 10, 055011 (2008)CrossRef
Martyshkin, D.V., Fedorov, V.V., Kim, C., Moskalev, I.S., Mirov, S.B, J. Opt. 12, 024005 (2010)CrossRef
Luke, L., Fedorov, V.V., Moskalev, I., Gallian, A., Mirov, S.B., Proc. SPIE 6100, 251 (2006)
Luo, M., VanMil, B.L., Tompkins, R.P., Myers, T.H., Giles, N.C., J. Appl. Phys. 97, 013518 (2005)CrossRef
Vallin, J.T., Slack, G.A., Roberts, S., Hughes, A.E., Phys. Rev. B 2, 4313 (1970)CrossRef
Potera, P., Stefaniuk, I., Kuzma, M., Virt, I., Pukowska, B., Cent. Eur. J. Phys. 7, 299 (2009)
Vlasenko, N.A., Belyaev, A.E., Denisova, Z.L., Kononets, Y.F., Komarov, A.V., Veligura, L.I., Semiconductor Physics, Quantum Electronics & Optoelectronics 8, 25 (2005)
Godlewski, M., Kaninska, M., J. Phys. C 13, 6537 (1980)CrossRef
Tablero, C., Phys. Rev. B 74, 195203 (2006)CrossRef
Ko, K.Y., Blamire, M.G., Appl. Phys. Lett. 88, 172101 (2006)CrossRef
Stefaniuk, I., Bester, M., Kuzma, M., J. Phys.: Conf. Ser. 104, 012010 (2009)
Stefaniuk, I., Bester, M., Lipiński, I.E., J. Phys.: Conf. Ser. 30, 339 (2005)
Stefaniuk, I., Bester, M., Virt, I.S., Kuzma, M., Acta. Phys. Pol. A 108, 413 (2005)CrossRef
Ko, K.Y., IEEE Trans. Magn. 45, 2428 (2009)
Ko, K.Y., Blamire, M.G., J. Korean Phys. Soc. 49, 591 (2006)
Abragam, A., Bleaney, B., Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, London, 1970)Google Scholar
Sugano, S. Tanabe, Y. Kamimura, H., Multiplets of Transition-Metal Ions in Crystals (Academic Press, , New York, 1970)Google Scholar
Dieleman, J., Title, R.S., Smith, W.V., Phys. Lett. 1, 334 (1962)CrossRef
Title, R.S., Bull. Am. Phys. Soc. 8, 23 (1963)
Title, R.S., Phys. Rev. 133, A1613 (1964)CrossRef
Ludwig, G.W., Lorenz, M.R., Phys. Rev. 131, 601 (1963)CrossRef
Sharma, R.R. Thosar, B.V. Lyenga, P.K., Advances in Mossbauer Spectroscopy (Elsevier Science, Amsterdam, 1983)Google Scholar
Yu, W.L., Zhao, M.G., Phys. Rev. B 37, 9254 (1988)
O’Neill, A.G., Allen, J.W., Solid State Commun. 46, 833 (1983)CrossRef
Lohr, L.L. Jr., J. Chem. Phys. 45, 3611 (1966)CrossRef
Lever, A.B.P., Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1984)Google Scholar
Sugano, S. Tanabe, Y. Kaminura, H., Multipletes of Transition-Metal Ions in Crystal (Academic Press, New York and London, 1970)Google Scholar
Zheng, W.C., Wu, S.Y., Zi, J., J. Phys.: Condens. Matter 13, 7459 (2001)
Wei, L.H., Wu, S.Y., Zhang, Z.H., Wang, H., Wang, X.F., Mod. Phys. Lett. B 22, 1739 (2008)CrossRef
Moreno, M., Barriuso, M.T., Aramburu, J.A., Appl. Magn. Reson. 3, 283 (1992)CrossRef
Weast, R.C., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1989)Google Scholar
Wyckoff, R.W., Crystal Structure, vol. 1 (Interscience Press, New York, 1951)Google Scholar
Clementi, E., Raimondi, D.L., J. Chem. Phys. 38, 2686 (1963)CrossRef
Clementi, E., Raimondi, D.L., Reinhardt, W.P., J. Chem. Phys. 47, 1300 (1967)CrossRef
Chakravarty, A.S., Introduction to the Magnetic Properties of Solids (Wiley-Interscience Publication, New York, 1980)Google Scholar
Jorgensen, C.K., Absorption Spectra and Chemical Bonding in Complexes (Pergamon Press, Oxford, 1964)Google Scholar
Parrot, R., Boulanger, D., Phys. Rev. B 47, 1849 (1993)CrossRef
Langer, D., Richter, H.S., Phys. Rev. 146, 554 (1966)CrossRef
Tuero, J.M.G., Ibarra, A., J. Phys. Chem. Solids 54, 203 (1993)
Griffith, J.S., The Theory of Transition-Metal Ions (Cambridge University Press, London, 1964)Google Scholar
McGarvey, B.R., J. Phys. Chem. 71, 51 (1967)CrossRef
Fraga, S. Saxena, K.M.S. Karwowski, J., Handbook of Atomic Data (Elsevier Press, New York, 1976)Google Scholar
Dong, H.N., Wu, X.X., Wu, S.Y., Zheng, W.C., Acta Phys. Sin. 51, 616 (2002)
Zhao, M.G., Xu, J.A., Bai, G.R., Xie, H.S., Phys. Rev. B 27, 1516 (1983)
Ogasawara, K., Ishii, T., Oba, F., Tanaka, I., Adachi, H., Lumin. Mater. 560, 341 (1999)
Gemma, N., J. Phys. C 17, 2333 (1984)CrossRef
Vanhaelst, M., Atthys, P. M., Boesman, E., Solid State Commun. 23, 535 (1977)CrossRef
Nistor, S.V., Stefan, M., J. Phys.: Condens. Matter 21, 145408 (2009)
Schneider, J., Sircar, S.R., Rauber, A., Z. Naturforsch. A 18, 980 (1963)
de Beer, R., Biesboer, F., van Veen, G., Z. Naturforsch. A 32, 724 (1977)
Title, R.S., Phys. Rev. 131, 2503 (1963)CrossRef
Cavenett, C., Proc. Phys. Soc. 84, 1 (1964)CrossRef
Kikuchi, C., Azarbayejani, G.H., J. Phys. Soc. Jpn 17, 453 (1962)
Woodbury, H.H., Ludwig, G.W., Bull. Am. Phys. Soc. 6, 118 (1961)