Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T21:33:23.787Z Has data issue: false hasContentIssue false

Surface charge deposition inside a capillary glass tube by an atmospheric pressure discharge in air

Published online by Cambridge University Press:  21 July 2011

J. Jánský*
Affiliation:
EM2C Laboratory, UPR 288 CNRS, École Centrale Paris, Grande voie des vignes, 92295 Châtenay-Malabry Cedex, France
A. Bourdon
Affiliation:
EM2C Laboratory, UPR 288 CNRS, École Centrale Paris, Grande voie des vignes, 92295 Châtenay-Malabry Cedex, France
Get access

Abstract

This paper presents simulations of the dynamics of surface charging by an air plasma discharge at atmospheric pressure initiated by a needle anode inside a capillary glass tube. During the discharge propagation in the tube, the highest positive surface charge density is observed close to the point electrode. We have shown that during the discharge propagation, the positive surface charge is increasing behind the discharge front, while the electric field at the surface is decreasing. Then, we have studied the influence of the tube radius, its permittivity and the applied pulsed voltage on surface charges. We have shown that the surface charge density during the discharge propagation is inversely proportional to the tube radius and surface charge densities of 30–50 nC/cm2 for a tube with Rtube = 100 μm and an applied voltage of 12 kV have been obtained. We have also noted that a higher permittivity results in a higher surface charge density and a faster surface charge deposition. Then we have shown that the surface charge deposited is proportional to the applied voltage. Finally, at the end of the voltage pulse, our simulations indicate that the positive surface charge deposited during the discharge propagation in the tube decreases to very low values in few nanoseconds.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hammer, T., Plasma Sources Sci. Technol. 11, A196 (2002)CrossRef
Pasquiers, S., Eur. Phys. J. Appl. Phys. 28, 319 (2004)CrossRef
Kim, H.H., Plasma Process Polym. 1, 91 (2004)CrossRef
Bhoj, A.N., Kushner, M.J., Plasma Sources Sci. Technol. 17, 035024 (2008)CrossRef
Unfer, T., Boeuf, J.P., J. Phys. D: Appl. Phys. 42, 194017 (2009)CrossRef
Soloviev, V.R., Krivtsov, V.M., J. Phys. D: Appl. Phys. 42, 125208 (2009)CrossRef
Likhanskii, A.V., Semak, V.V., Schneider, M.N., Opaits, D.F., Miles, R.B., Macheret, S.O., in 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, AIAA, 2009-841
Gibalov, V.I., Pietsch, G.J., J. Phys. D: Appl. Phys. 33, 2618 (2000)CrossRef
Allegraud, K., Guaitella, O., Rousseau, A., J. Phys. D: Appl. Phys. 40, 7698 (2007)CrossRef
Murooka, Y., Koyama, S., J. Appl. Phys. 50, 6200 (1979)CrossRef
Massines, F., Rabehi, A., Decomps, Ph., Gadri, R.B., Ségur, P., Mayoux, Ch., J. Appl. Phys. 83, 2950 (1998)CrossRef
Massines, F., S′egur, P., Gherardi, N., Khamphan, C., Ricard, A., Surf. Coat. Technol. 174–175, 8 (2003)CrossRef
Opaits, D.F., Schneider, M.N., Miles, R.B., Likhanskii, A.V., Macheret, S.O., Phys. Plasmas 15, 073505 (2008)CrossRef
Jánský, J., Tholin, F., Bonaventura, Z., Bourdon, A., J. Phys. D: Appl. Phys. 43, 395201 (2010)CrossRef
Le Delliou, P., Tardiveau, P., Jeanney, P., Bauville, G., Jorand, F., Pasquiers, S., in Proc. XVIII Int. Conf. on Gas Discharges and Their Applications (GD 2010)
Morrow, R., Lowke, J.J., J. Phys. D: Appl. Phys. 30, 614 (1997)CrossRef
Bourdon, A., Pasko, V., Liu, N., Célestin, S., Ségur, P., Marode, E., Plasma Sources Sci. Technol. 16, 656 (2007)CrossRef
Liu, N.Y., Célestin, S., Bourdon, A., Pasko, V.P., Séegur, P., Marode, E., Appl. Phys. Lett. 91, 211 (2007)
Kulikovsky, A.A., J. Comput. Phys. 119, 149 (1995)CrossRef
Célestin, S. Bonaventura, Z., Zeghondy, B., Bourdon, A., Ségur, P., J. Phys. D: Appl. Phys. 42, 065203 (2009)CrossRef
Amestoy, P., Duff, I., L’Excellent, J., Koster, J., SIAM J. Matrix Anal. Appl. 23, 15 (2001)CrossRef
Morrow, R., Sato, N., J. Phys. D: Appl. Phys. 32, L20 (1999)CrossRef
Potin, J., Ph.D. thesis, University Paul Sabatier, Toulouse, France, (2001)