Hostname: page-component-68945f75b7-tmfhh Total loading time: 0 Render date: 2024-08-06T05:05:03.396Z Has data issue: false hasContentIssue false

RF-powered atmospheric pressure plasma jet for surface treatment *

Published online by Cambridge University Press:  18 February 2013

Joanna Pawłat
Affiliation:
Lublin University of Technology, ul. Nadbystrzycka 38a, 20-618 Lublin, Poland
Radosław Samoń
Affiliation:
Lublin University of Technology, ul. Nadbystrzycka 38a, 20-618 Lublin, Poland
Henryka D. Stryczewska*
Affiliation:
Lublin University of Technology, ul. Nadbystrzycka 38a, 20-618 Lublin, Poland
Jarosław Diatczyk
Affiliation:
Lublin University of Technology, ul. Nadbystrzycka 38a, 20-618 Lublin, Poland
Tomasz Giżewski
Affiliation:
Lublin University of Technology, ul. Nadbystrzycka 38a, 20-618 Lublin, Poland
Get access

Abstract

Atmospheric pressure plasma jet (APPJ) was developed for decontamination purposes. Features of the device are ability to work with various feed-gases at the atmospheric pressure in several gas-flow, frequency and current-voltage regimes. LabVIEW virtual measurement sub-system for monitoring and measurement process through subsequent setting of electrical and gas-flow parameters (digital control of flow-meters), conditioning and amplification of electrical signals and collection of the data from peripheral measuring devices was applied.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution to the Topical Issue “13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)”, Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

References

Kamgang Youbi, G., Naitali, M., Herry, J.-M., Hnatiuc, E., Brisset, J.-L., in 12th International Conference onOptimization of Electrical and Electronic Equipment(OPTIM), Basov, (2010), pp. 13361342
Pawłat, J., Ihara, S., Plasma Process. Polym. 4, 753 (2007) CrossRef
Laroussi, M., Leipold, F., Int. J. Mass Spectrom. 233, 81 (2004) CrossRef
Eliasson, B., Kogelschatz, U., IEEE Trans. Plasma Sci. 19, 1063 (1991) CrossRef
Moreau, M., Orange, N., Feuilloley, M., Biotechnol. Adv. 26, 610 (2008) CrossRef
Moisan, M., Barbeau, J., Pelletier, J., Philip, N., Saoudi, B., in 13th CIP, 2001, pp. 1218
Ohkawa, H., Akitsu, T., Tsuji, M., Kimura, H., Kogoma, M., Fukushima, K., Surf. Coat. Technol. 200, 5829 (2006)CrossRef
Kelly-Wintenberg, K., Hodge, A., Montie, T., Deleanu, L., Sherman, D., Roth, J., Vac. Sci. Technol. A 17, 1539 (1999)CrossRef
Vleugels, M., Shama, G., Deng, X., Greenacre, E., Brocklehurst, T., Kong, M., IEEE Trans. Plasma Sci. 33, 824 (2005)CrossRef
Weltmann, K., Brandenburg, R., Bussiahn, R., Haehnel, M., Polak, M., Von Woedtke, T., Ehlbeck, J., in NATO AdvancedResearch Workshop Plasma for Bio-Decontamination, Medicine and Food Security, Jasná, Slovakia, 2011 p. 1314Google Scholar
Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., von Woedtke, T., Brandenburg, R., von dem Hagen, T., Weltmann, K., J. Phys. D: Appl. Phys. 44, 013002 (2011)CrossRef
Dobrynin, D., Fridman, Gr., Friedman, Gr., Fridman, A., New J. Phys. 11, 1367 (2009)CrossRef
Machala, Z., Jedlovský, I., Chládeková, L., Pongrác, B., Giertl, D., Janda, M., Šikurová, L., Polčic, P., Eur. Phys. J. D 54, 195 (2009)CrossRef
Kamgang-Youbi, G., Herry, J., Meylheuc, T., Brisset, J.L., Bellon-Fontaine, M., Doubla, A., Naďtali, M., Lett. Appl.Microbiol. 48, 13 (2008)CrossRef
Kolb, J., Mohamed, A., Price, R., Swanson, R., Bowman, A., Chiavarini, R., Stacey, M., Schoenbach, K., Appl. Phys. Lett. 92, 241501 (2008)CrossRef
Pawłat, J., in ELMECO-7–AoS-10, Natęczów, Poland, 2011, pp. 123124Google Scholar
Pawłat, J., Gizewski, T., Stryczewska, H.D., in 17th International Conference on Advanced Oxidation Technologies for Treatment of Water and Soil, San Diego, California, USA, 2011, p. 54