Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T11:21:53.975Z Has data issue: false hasContentIssue false

Numerical simulation of the interaction of biological cells with an ice front during freezing

Published online by Cambridge University Press:  15 December 2001

M. Carin*
Affiliation:
Université de Bretagne Sud, Centre de Recherche, BP 92116, 56321 Lorient, France
M. Jaeger
Affiliation:
IUSTI (UMR CNRS 6595), 5 rue Enrico Fermi, 13453 Marseille Cedex 13, France
Get access

Abstract

The goal of this study is a better understanding of the interaction between cells and a solidification front during a cryopreservation process. This technique of freezing is commonly used to conserve biological material for long periods at low temperatures. However the biophysical mechanisms of cell injuries during freezing are difficult to understand because a cell is a very sophisticated microstructure interacting with its environment. We have developed a finite element model to simulate the response of cells to an advancing solidification front. A special front-tracking technique is used to compute the motion of the cell membrane and the ice front during freezing. The model solves the conductive heat transfer equation and the diffusion equation of a solute on a domain containing three phases: one or more cells, the extra-cellular solution and the growing ice. This solid phase growing from a binary salt solution rejects the solute in the liquid phase and increases the solute gradient around the cell. This induces the shrinkage of the cell. The model is used to simulate the engulfment of one cell modelling a red blood cell by an advancing solidification front initially planar or not is computed. We compare the incorporation of a cell with that of a solid particle.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asthana, R., Tewari, S.N., J. Mater. Sci. 28, 5414 (1998). CrossRef
Azouni, M.A., Casses, P., Adv. Colloid Interface Sci. 75, 83 (1998). CrossRef
Rempel, A.W., Worster, M.G., J. Cryst. Growth 205, 427 (1999). CrossRef
Sen, S., Kaukler, W.K., Curreri, P., Stefanescu, D.M., Metall. Mater. Trans. A 28, 2129 (1997). CrossRef
Wilde, G., Byrnes, M., Peperezko, J.H., J. Non-Cryst. Solids 250-52, 626 (1999). CrossRef
Wilde, G., Peperezko, J.H., Mater. Sci. Eng. A 283, 25 (2000). CrossRef
Körber, C., Quart. Rev. Phys. 21, 229 (1988).
Mazur, P.J., Gen. Physiol. 47, 347 (1963). CrossRef
Walcerz, D.B., Cryobiology 32, 35 (1995). CrossRef
Batycky, R.P., Hammerstedt, R., Edwards, D.A., Philos. Trans. Roy. Soc. London A 355, 2459 (1997). CrossRef
Wollhöver, K., Körber, C., Scheiwe, M.W., Hartmann, U., Int. J. Heat Mass Transfer 28, 761 (1985). CrossRef
Corte, A.E., J. Geophys. Res. 67, 1085 (1962). CrossRef
Boettinger, W.J., Coriell, S.R., Greer, A.L., Karma, A., Kurz, W., Rappaz, M., Trivedi, R., Acta Mater. 48, 43 (2000). CrossRef
Jaeger, M., Carin, M., Medale, M., Tryggvason, G., Biophys. J. 77, 1257 (1999). CrossRef
M. Carin, Ph.D. thesis, University of Provence, 2000.
Ishiguro, H., Rubinsky, B., Cryobiology 31, 483 (1994). CrossRef
Mazur, P., Cryobiology 14, 251 (1977). CrossRef
Yemmou, M., Azouni, M.A., Casses, P., Pétré, G., J. Cryst. Growth 128, 1130 (1993). CrossRef
Hubel, A., Cravalho, E.G., Bunner, B., Körber, C., Cryobiology 29, 183 (1992). CrossRef
Ishiguro, H., Koike, K., Ann. NY Acad. Sci. 858, 235 (1998). CrossRef
Langer, J.S., Rev. Mod. Phys. 52, 1 (1980). CrossRef