Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-26T20:47:40.829Z Has data issue: false hasContentIssue false

A homologous seriesPb2n+1Nb2n−1O7n−1studied by electron microscopy

Published online by Cambridge University Press:  15 July 1999

Ch. Leroux*
Affiliation:
Laboratoire Matériaux Multiphasés et Interfaces, Université de Toulon-Var, B.P. 132, 83957 La Garde Cedex, France
T. Badeche
Affiliation:
Laboratoire Matériaux Multiphasés et Interfaces, Université de Toulon-Var, B.P. 132, 83957 La Garde Cedex, France
G. Nihoul
Affiliation:
Laboratoire Matériaux Multiphasés et Interfaces, Université de Toulon-Var, B.P. 132, 83957 La Garde Cedex, France
O. Richard
Affiliation:
EMAT, University of Antwerp (RUCA), Groenenborgerlaan 171, 2020 Antwerpen, Belgium
G. van Tendeloo
Affiliation:
EMAT, University of Antwerp (RUCA), Groenenborgerlaan 171, 2020 Antwerpen, Belgium
Get access

Abstract

The PbO–Nb2O5 phase diagram has been investigated, using electron diffraction and high resolution electron microscopy (HREM), for [Pb]/[Nb] ratios between 1 and 1.25. Apart from the basic pyrochlore structure, different long period superstructures, forming a homologous series Pb2n+1Nb2n−1O7n−1 based on the pyrochlore structure have been found. Members with n = 5, 7, 9, 11 have been observed and their structure determined based on electron diffraction and HREM. Image simulations allow studying the influence of cation and oxygen vacancies in the basic structure. Ordering of oxygen vacancies could be detected while no cation vacancies are observed. Deviations from the perfect structure and ordered stacking defects are discussed.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Roth, R., J. Res. Nat. Bur. Std. 62, 27 (1959). CrossRef
Kemmler-Sack, S., Rüdorff, W., Z. Anorg. Che. 344, 23 (1966). CrossRef
Brusset, H., Gillier-Pandraud, H., Mahe, R., Voliotis, S.D., Mat. Res. Bull. 6, 413 (1971). CrossRef
Vandenborre, M.-T., Chubb, M., Mahe, R., Brusset, H., C.R. Acad. Sc. Paris 284, 179 (1977).
Saine, M.-C., Schiffmacher, G., Gasperin, M., Busset, H., Rev. Chim. Min. 16, 597 (1979).
Saine, M.-C., Gasperin, M., Busset, H., Rev. Chim. Min. 18, 587 (1981).
Bernotat-Wulf, H., Hoffmann, W., Z. Krist. 158, 101 (1982). CrossRef
Bernotat-Wulf, H., Hoffmann, W., Z. Krist. 164, 129 (1983).
Sävborg, O., Lundberg, M., J. Solid State Chem. 57, 135 (1985). CrossRef
Rivolier, J.-L., Ferriol, M., Cohen-Adad, M.-T., Eur. J. Sol. State Inorg. Chem. 32, 251 (1995).
Caranoni, C., Thuries, F., Leroux, Ch., Nihoul, G., Phil. Mag. A 69, 633 (1994). CrossRef
Ch. Leroux, H. Tatarenko, G. Nihoul, Phys. Rev B 53, 11993 (1996). CrossRef
Khachaturyan, A.G., Pokrovskiy, B.I., Prog. Mater. Sci. 29, 1 (1985). CrossRef
Subramanian, M.A., Aravamudan, G., Subba Rao, G.V., Prog. Solid State Chem. 15, 55 (1983). CrossRef